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Metabolite \mə-ˈta-bə-ˌlīt\ – a small-molecule that may be a starting component, 

intermediate or product of metabolism; may be contained within an organism or in the 

surrounding environment. 

Metabolome \mə-ˈta-bə-ˌlōm\ – the complete set of metabolites that are found within a 

biologically derived sample. 

Metabolomics \ mə-ˈta-ˌbə-ˈlō-miks\ – the systematic and comprehensive study of the 

metabolome. 

 

1.1 Brief history and the role of metabolomics in society 

Science fiction often portrays a future in which human health or identity can be 

monitored and diagnosed in real-time. We can readily infer that this is typically 

accomplished by taking a snapshot of an individual’s molecular makeup, that is to say, 

all the chemicals that define the individual. This could include DNA, RNA, proteins or 

metabolites, although this snapshot could potentially include the molecular makeup of 

microbes present in said individual. For example, in the movie Gattacca a miniscule 

drop of blood or small urine sample can instantly and accurately identify an individual 

based on their unique molecular makeup. The same information is also used to predict 

an exceptionally accurate timeline of the individual’s future health. 

Although current technology does not allow such a rapid and global analysis of our 

molecular makeup, scientific progress within the last few decades has brought us within 

striking-distance of such science fiction. For instance, a recently developed technique 
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called nanostructure-initiator mass spectrometry (NIMS) has been used to perform 

spatial mapping of metabolites in dissected brain tissue (Patti et al., 2010). In other 

words, scientists are pioneering the ability to determine the localized molecular makeup 

of living tissue. Technology such as NIMS is beginning to truly blur the line that 

separates reality from science fiction. 

Currently, several fields of study attempt to provide insight into the molecular 

makeup of an organism: genomics, transcriptomics, proteomics and metabolomics. 

Although metabolomics as a defined field of study is the youngest and appeared as 

recently as 1998 CE (Oliver, Winson, Kell, & Baganz, 1998), its origins can likely be 

traced to sometime between 1000-2000 BCE. 

Hindu physicians practicing Āyurveda medicine recognized that the status of one’s 

health could be determined by analyzing bodily fluids and developed early biological 

screening assays based on these principles: if flies swarm to a place where a person 

urinated, then the urine must be sweet, which we can infer indicated high glucose 

concentration and hence that the patient was diabetic. Similarly, ants swarming to the 

body indicated that the sweat was sweet, another indication of high glucose content. 

(Srikanthamurthy, 1983). Āyurvedic physicians may have also used ants to detect toxins 

in breast milk, which was fed to ants to see if they would die after consumption (Nichter, 

1981). 

A practitioner of traditional Chinese medicine, Wang Shou published his work 

Collection of Diseases in 752 CE in which he provided a simple method to diagnose 
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diabetes: have the patients urinate on a wide, flat brick. Then place it near an ant 

colony. If ants gathered at the spot of urination, then the patient was diabetic (Cohen, 

2012).  

The beginning of the modern era of quantitative metabolomics is often attributed to 

two-time Nobel laureate Linus Pauling. In 1971 CE Pauling et al. published on the use of 

gas chromatography for quantitative analysis of urine vapor and breath. Using this 

method, they were able to quantify 280 substances in urine vapor (Pauling, Robinson, 

Teranishi, & Cary, 1971). This was a major step forward analytically and Pauling noted: 

“Information about the genetic nature of an individual human being, as reflected in the 

rates of various chemical reactions that take place in his body, usually catalyzed by 

enzymes, could be obtained by the thorough quantitative analysis of body fluids. 

Moreover, the thorough quantitative analysis of body fluids might permit differential 

diagnosis of many diseases in a more effective way than is possible at the present time.”  

As result of Pauling’s pioneering work, metabolomics is currently used in a variety of 

ways to study human health. For example, a recent study has illustrated a mechanism 

by which insulin resistance, and ultimately type-2 diabetes, can arise via dysregulation 

of certain metabolites, specifically branched-chain amino acid metabolism (C. B. 

Newgard et al., 2009). This information has provided the basis for a metabolomics 

method that could allow physicians to predict the risk of diabetes nearly a decade before 

onset (C. Newgard, 2012; T. J. Wang et al., 2011).  

In other research, metabolomics has been used to identify a novel biomarker for 

some types of brain cancer and acute myeloid leukemia (AML) (Dang et al., 2009; P. S. 
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Ward et al., 2010). Patients with these types of cancer can harbor a mutant isoform of 

the enzyme isocitrate dehydrogenase (IDH), which results in significantly elevated levels 

of the metabolite 2-hydroxyglutarate (2HG). The 2HG levels are consistently 10 to 100-

fold higher in samples that harbor IDH mutations than in those without mutations. Initial 

testing showed that screening for elevated levels of 2HG can provide a robust and rapid 

diagnostic method in the detection of cancer associated with IDH mutations (P. S. Ward 

et al., 2010). 

Metabolomics has also proven to be an effective way to study metabolic signatures 

found during acute (~10 min treadmill or stationary bicycle) and prolonged (marathon 

running) exercise (G. D. Lewis et al., 2010). Exercise induced metabolic signatures 

showed positive correlations between fitness and glycerol, glutamine, pantothenate and 

niacinamide. All of these data have the potential for development of novel biomarker 

screening assays relevant to cardiovascular health from a minimally invasive approach. 

Studying metabolic interactions within microbial communities is another area with 

great potential for metabolomics. For example, Nakanishi et al. recently observed a 

commensal relationship between Bifidobacterium longum and Escherichia coli O157:H7 

(O157) using a real-time metabolomics approach (Nakanishi et al., 2010). Specifically 

they observed that aspartate and serine produced by B. longum was consumed by E. 

coli O157:H7. In a similar study, the same group highlighted a symbiotic relationship 

between host and microbe. Pre-inoculation of mice with B. longum prior to infection with 

E. coli O157:H7prevented their death from Shiga toxin produced by E. coli O157:H7 
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(Fukuda et al., 2011). Through a combination of metabolomics and transcriptomics 

Fukuda et al. showed that BL produces high levels of acetate, which in turn activates 

anti-inflammatory and anti-apoptotic genes in epithelial cells thereby preventing the 

negative effects of Shiga toxin. 

A metabolomics approach was also used to study metabolic cooperation between 

Bacillus megaterium and Ketogulonicigenium vulgare (Zhou et al., 2011). These 

organisms have been co-cultured to synthesize 2-keto-gulonic acid (2KGA), which is a 

precursor to vitamin C. However, the mechanism of their interaction was poorly 

understood. Co-culturing on agar plates showed that amino acids secreted by K. 

vulgare were capable of functioning as chemoattractants for B. megatarium and induced 

swarming toward K. vulgare. Furthermore, B. megatarium was shown to secrete 

erythrose, erythritol, guanine and inositol, which were consumed by K. vulgare. 

Consumption of these metabolites correlated to an increase in the concentration of 

2KGA produced by K. vulgare.  

Another promising area in which metabolomics can be applied is metabolic 

engineering. A recent study probed the effects of acetate and formate on xylose 

metabolism and ethanol production in an engineered strain of Saccharomyces cerivisiae 

(Hasunuma et al., 2011). In the presence of relatively high levels of acetate, S. 

cerevisiae struggled to consume xylose and showed decreased ethanol production, 

which is of interest because hydrolysates used for fermentation to biofuels often contain 

relatively high levels of acetate. A metabolomics analysis showed a positive correlation 
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between the accumulation of non-oxidative pentose phosphate pathway (PPP) 

metabolites and increased acetate concentrations in the growth medium. 

Overexpression of a PPP-related transaldolase or transketolase was able to reduce the 

levels of accumulated PPP metabolites during acetate stress, restored some ability for 

xylose consumption and increased ethanol production. This kind of approach 

demonstrates the use of metabolomics to develop rational strategies to confer stress 

tolerance through genetic engineering. 

In another application of metabolomics to metabolic engineering, Chong et al. found 

that Chinese hamster ovary (CHO) cells overexpressing recombinant monoclonal 

antibody (IgG) grown in a standard culture medium effluxed significant quantities of 

malate (Chong et al., 2010). Using a pulse-chase experiment, they showed that excess 

malate was produced from aspartate incorporated from growth medium. Eventually, 

cells released accumulated malate into the external environment, which potentially 

negatively affected cell viability. To counter the accumulation of malate, CHO cells were 

transfected with a vector containing malate dehydrogenase II (MDH II). The result was a 

dramatic reduction in malate efflux accompanied by increased cell viability and higher 

IgG titer. 

Metabolomics has come a long way since its simple origins in the early days of 

Āyurveda medicine. And as one can see, metabolomics is a tool that can guide 

research in a broad spectrum of disciplines. In fact, in the last decade the number of 

metabolomics publications per year has skyrocketed from approximately 200 to nearly 
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900 (Ellis & Goodacre, 2012). Given this trend, we can likely expect metabolomics to be 

a driving force that bridges the gap between science fiction and reality. 

1.2 The right tools for the job 

The ideal tool for metabolomics is one that can detect all metabolites at any 

concentration, meanwhile analyzing hundreds of samples per day. Although such an 

Eye of Providence does not exist, nuclear magnetic resonance (NMR) spectroscopy and 

mass spectrometry (MS) have become the mainstay tools for metabolomics. Both tools 

are strongly rooted in analytical and organic chemistry for their ability to allow the user 

to determine chemical structure or discriminate between chemicals in a mixture. For 

example, organic chemists routinely need to distinguish between the main product of an 

organic synthesis and unwanted side-products. 

While both methods are highly regarded for their ability to discriminate across a 

breadth of metabolite classes as well as their quantitative reliability (Fiehn, 2002; Pan & 

Raftery, 2007; Patti, Yanes, & Siuzdak, 2012), the major advantage of MS is its superior 

sensitivity. For example, zmol (10-21 mole or <1000 molecules) quantities of metabolites 

have been measured by MS (Salehpour, Possnert, & Bryhni, 2008). Although in 

practice, limits of detection seem to fall more in the pmol to fmol range (10-12-10-15 mole) 

(Bennett et al., 2009; Lu et al., 2010). This is in contrast to NMR, in which we have 

found practical limits of detection to be in the in the low µmol to high nmol (10-6-10-9 

mole) range for routine metabolomics experiments.  
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Recent advances in NMR probe design allow for experiments to be conducted on 

samples of 10-20 µl, which stands contrast to typical volumes of 500-600 µl (Brey et al., 

2006; Grimes & O’Connell, 2011; Olson et al., 2004). These so-called microcoil probes 

show mass sensitivity increases up to 10-fold. This design shows a lot of promise for 

sample limited conditions, such as when working with murine serum where one can 

procure only 25 µl of serum. Furthermore, larger samples can be concentrated into a 

smaller volume in order to improve signal detection.  

Despite the advantage of sensitivity, MS does hold some disadvantages. For 

example, it is usually necessary to fractionate samples by gas chromatography (GC) or 

liquid chromatography (LC) prior to analysis by MS. In contrast, NMR does not require 

sample fractionation due to the ability to excite and observe all NMR active nuclei at 

once. 

Other advantages of NMR are that it is non-destructive, and sample preparation 

does not require chemical alteration of precious samples. For example, metabolomics 

analysis by GC-MS often requires chemical derivatization in order to produce a volatile 

compound for GC. This could lead to quantitative errors if derivatization is incomplete. 

Furthermore, once a sample is derivatized it is most likely unsuitable for other types of 

experiments. While LC-MS does not require chemical derivatization, accurate 

quantitation could be compromised by incomplete chromatographic elution or ion 

suppression.  
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Another advantage of NMR is that it can provide direct discrimination between 

different types of stereochemistry. For example, glucose and mannose have the exact 

same mass and are essentially the same molecule except for the three-dimensional 

arrangement of H and OH at C2. Unless they can be fractionated by chromatography, 

MS will lack the necessary discriminatory power to distinguish between these two 

molecules. Potentially even more complicated is the case of α- and β-glucose. In both of 

these examples, NMR can easily discriminate between the diastereoisomers.  

A final word on these two powerful tools and their utility in metabolomics. At the end 

of the day, they should not be regarded as competing tools, but as complementary 

methods in metabolomics. With the constant discovery of new metabolites, both tools 

will be required to make progress, and recent developments in synergizing MS and 

NMR portend a bright future for metabolomics (Godejohann, 2007; Tang, Xiao, & Wang, 

2009). 
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1.3 NMR, a Swiss Army knife for metabolomics 

Nuclear magnetic resonance was first described in 1938 by Isidor Rabi (Rabi, 

Zacharias, Millman, & Kusch, 1938) and its use in liquid and solids was developed 

independently in 1946 by Felix Bloch and Edward Purcell (Bloch, Hansen, & Packard, 

1946; Purcell, Torrey, & Pound, 1946). The first use of NMR for what can be construed 

as metabolomics appears to be that of Hoult et. al when they developed an assay for 

31P NMR to study metabolites in biological tissue (Hoult et al., 1974). Jeremy Nicholson 

pioneered the use of NMR for modern, systems-level metabolomics throughout the late 

1990’s.  

I have not delved into the theory behind NMR here, because this information has 

been covered exhaustively by numerous texts and reviews. Instead I have chosen to 

focus on presenting recent and relevant techniques used for NMR-based metabolomics 

data collection. 

The most common method for NMR-based metabolomics data collection is one-

dimensional proton (1D 1H) NMR. This method has several advantages: 1) the 1H 

nucleus is very sensitive to magnetic induction, 2) the natural abundance of the 1H 

nucleus is 99%, 3) 1H nuclei are ubiquitous in metabolites and 4) data collection is 

relatively rapid.  

Unfortunately, the dispersion of chemical shift values in 1D 1H is limited to a narrow 

range. A survey of metabolites with spectral data stored in the Biological Magnetic 

Resonance Data Bank (BMRB) showed 4561 assigned 1H chemical shifts 
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corresponding to 906 metabolites. The chemical shifts range from 0 to 11.5 ppm, with 

71% between 0 to 5 ppm (http://www.bmrb.wisc.edu/metabolomics/ accessed June 

2012). As a result, 1D 1H spectra suffer from severe signal overlap as samples become 

more complex. This in turn negatively affects one’s ability to accurately identify and 

quantify metabolites.  

One practical approach to overcome this barrier is to collect NMR spectra that 

disperse signals into multiple dimensions. For example, a 1H-13C heteronuclear single 

quantum coherence (HSQC) experiment correlates chemical shifts of proton nuclei 

covalently bound to 13C (Figure 1.1). First, this method is actually more sensitive than 

attempting to directly detect 13C due to the natural abundance and relative high 

concentration of 1H nuclei. Second, this allows one to take advantage of the 13C 

nucleus’ much wider chemical shift range. For example, the 13C data stored in the 

BMRB for the 906 metabolites mentioned above spans a chemical shift range from 0 to 

223 ppm, with 55% between 0 and 100 ppm.  
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Figure 1.1. Comparison of (A) the 1D 1H spectrum and (B) the 1H-13C HSQC 

spectrum of a bovine liver extract. Note the greater dispersion along the 13C 

dimension. 
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A general and practical method for relatively quick data collection by 1H-13C HSQC 

was developed in our laboratory by Ian Lewis. This method, dubbed Fast Metabolite 

Quantification by Nuclear Magnetic Resonance (FMQ by NMR) (I. A. Lewis et al., 2007), 

is the main method that I used in my studies, and its application is shown in greater 

detail in Chapters 2-4.  

Using this method on an instrument equipped with a cryogenic probe, it is possible to 

observe 40 metabolites in a sample using only 12 min of data acquisition. However, in 

order to be observed and accurately quantified, a metabolite generally needs to be 

present in the NMR tube at concentrations greater than 0.5 mM. It should be noted that 

the true limits of detection and amount of time for data collection are dictated by the 

number of protons found in a given H–C functional group (for a given metabolite) as well 

as the sample matrix. Quantification is achieved by relating peak intensities in samples 

to peak intensities in standard mixtures. Furthermore, it was shown by Lewis at al. and 

others (Gronwald et al., 2008; I. A. Lewis et al., 2007) that the multidimensional 

approach provides better quantitative accuracy over a wider range of metabolite 

concentrations than 1D 1H experiments.  

There are some drawbacks to this method however. First, all metabolites of interest 

must be pre-identified before a mixture of standard compounds can be generated. 

Another drawback of FMQ by NMR is that metabolites for which a known standard does 

not exist cannot be accurately quantified. This is also the case when metabolites have 

been isotopically enriched and equivalently enriched standard cannot be purchased. 
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Due to experimental factors such as relaxation times, mixing time, evolution time and 

uneven excitation profiles that occur during the HSQC experiment, traditional peak 

integration relative to an internal standard is unreliable for accurate quantification.  

One recently developed method overcomes this limitation by applying a correction 

factor to measured peaks (Rai, Tripathi, & Sinha, 2009). Experimentally determined T H1 , 

T H2 , delay times and JCH values were used to correct for errors introduced during the 

HSQC pulse sequence. After correction, metabolites are quantified by comparing the 

peak volume to an internal standard of known concentration. This method has been 

successfully applied to analysis of human urine samples. 

The drawback for this method is the time required to determine the parameters for 

the correction factor. The authors demonstrate that within a given set of urine samples 

only slight deviation in the parameters for the correction was observed. Therefore it is 

feasible that in a particular experiment the correction parameters only need to be 

determined at the onset. However, if switching to a different instrument or the sample 

matrix changes significantly (i.e. time-course data), then parameter calibration will 

probably need to be repeated.  

A method developed by Kaifeng Hu in our laboratory called extrapolated time-zero 

HSQC (HQSC0) is another alternative (Hu, Westler, & Markley, 2011), which does not 

require determining correction parameters. By measuring the peak volumes of 

successive HSQC experiments, it was possible to extrapolate back to a signal that was 

devoid of errors generated by the HSQC pulse sequence. This method was successfully 
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applied to metabolomics analysis of murine liver (Hu, Ellinger, Chylla, & Markley, 2011). 

The major drawback is that these experiments can require significantly longer data 

acquisition than FMQ by NMR. Therefore, this method is not well suited for high-

throughput metabolomics.  

One disadvantage of using 1H-13C HSQC for samples that are not enriched with 13C 

is reduced sensitivity compared to 1D 1H experiments. An alternative is to use 1H-1H 

total correlation spectroscopy (TOCSY) experiments. This experiment correlates the 

chemical shifts of all the protons in a given molecule. The result is a spectrum that is 

dispersed into two proton dimensions. The sensitivity of the experiment is essentially 

equivalent to that of a standard 1D 1H experiment, and it has been successfully applied 

to study metabolites in insect venom (Zhang, Dossey, Zachariah, Edison, & 

Bruschweiler, 2007), colorectal cancer cells (C. Ludwig et al., 2009) and Caenorhabditis 

elegans (S. L. Robinette et al., 2011). However, 1H-1H TOCSY spectra can still display 

significant signal overlap, and from these studies it is apparent that simpler complex 

mixtures are better suited for 1H-1H TOCSY. 

One specific application where the 1H-1H TOCSY experiment is useful is isotope-

tracing studies in metabolomics. For a given functional group, protons coupled to 13C 

nuclei split into distinct peaks from protons coupled to 12C nuclei (Figure 1.2). The 

integral of the 13C coupled peaks relative to the total signal indicates the percentage of 

13C present in that functional group. 
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Figure 1.2. Example of 13C-1H coupling from the methyl group of the acetate anion at 

natural abundance 13C (1.1%) from a 1D 1H spectrum. The central peak (red star) 

represents all protons coupled to a 12C and the flanking peaks (green start) represent 

protons coupled to a 13C. The integral of flanking peaks relative to the total integral 

for the methyl signal indicates the abundance of 13C.  
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Measurement of 13C enrichment in metabolites using 1H-1H TOCSY has been shown 

to be quantitatively equivalent to measurements traditionally obtained by 1D 1H NMR 

experiments (Massou, Nicolas, Letisse, & Portais, 2007a; Massou, Nicolas, Letisse, & 

Portais, 2007b). The 1H-1H TOCSY experiment has the advantage of some added 

dispersion from the second 1H dimension. A recent method developed by Ian Lewis in 

our laboratory, called isotope-edited TOCSY (ITOCSY), filters two-dimensional 1H-1H 

TOCSY spectra from 12C- and 13C-containing molecules into separate, quantitatively 

equivalent spectra (I. A. Lewis et al., 2010). All of these methods have been 

successfully employed to characterize metabolites in E. coli. 

Not all methods for reducing spectral complexity require multiple dimensions. Often 

times one metabolite may dominate the spectrum. For example, serum is a common 

biofluid studied using metabolomics, but its NMR spectrum is dominated by glucose, 

which is present at levels nearly an order of magnitude higher than other metabolites. 

This leads to two problems, 1) identifying other metabolites becomes problematic due to 

spectral overlap, especially in the 3.2 to 4.0 ppm range where the majority of the 

glucose signals reside and 2) non-targeted metabolomics generally uses multivariate 

statistical analysis, which can miss important changes in low concentration metabolites 

when one signal such as glucose dominates the spectrum.  

Ye et al. recently investigated methods for background subtraction in 1D 1H spectra 

(Ye et al., 2011). In conventional background subtraction, a signal is removed from a 

sample by subtracting the same signal generated by a pure standard. While common in 
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ultraviolet or infrared spectroscopy, the sample matrix can have significant effects on 

signals in an NMR spectrum. Consequently, signals align poorly (or not at all!), which 

produces significant artifacts after subtraction. Instead, Ye et al. collected 1D 1H spectra 

of serum or urine samples and then spiked the same sample with a small volume of 

highly concentrated glucose standard to use for background subtraction. The key is that 

the spectrum used for background subtraction contains identical chemical shifts and 

lineshapes as the original spectrum. When compared to subtraction using a pure 

standard or computer modeled glucose signals, their “Add to Subtract” method was 

capable of reducing glucose signals by 98% while producing virtually no artifacts.  

Finally, recent developments in chemoselective isotope tagging have proven to be 

an effect method for simplifying spectra while increasing sensitivity of low abundance 

compounds. Methods have been developed for 13C acetylation (Shanaiah et al., 2007) 

or formylation (Ye et al., 2010)  of amine-, 31P phosphorylation of lipid- (DeSilva et al., 

2009) and 15N amidation (Ye et al., 2009) of carboxyl-containing metabolites. In 

particular, isotope tagging of amino acids shows a lot of promise as the sensitivity 

enhancement was shown to be nearly an order of magnitude and this technique has 

been applied to investigate amino acid profiles from individuals with phenylketonuria, 

tyrosinemia, homocystinuria, or arginosuccinic aciduria (Shanaiah et al., 2007).  

Although NMR often is chosen for metabolomics because one can avoid chemical 

derivatization, these methods appear to be highly reproducible with high yields of 

derivatization (85-100%) (Shanaiah et al., 2007). Furthermore, the costs of reagents 
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and labor are minimal and, given the appropriate instrumentation, derivatization could 

be conducted in an automated, high-throughput fashion.  

In summary, a myriad of approaches for NMR-based metabolomics are currently 

available. These methods allow one to overcome spectral complexity as well as 

sensitivity issues all while maintaining the ability to characterize metabolites across 

multiple classes of compounds. Taken together, this truly allows NMR to be a Swiss 

Army knife for metabolomics.  

1.4 Primer for metabolomics sample preparation 

Although NMR is amenable to in situ studies, for most metabolomics studies the 

initial steps are to isolate molecules from cells or tissues and separate small molecule 

metabolites from macromolecules. This serves a number of purposes: 1) improved 

spectral quality by removing cell membrane and macromolecular components, 2) control 

of sample pH, 3) concentration of low abundance metabolites, and 4) exchanging the 

solvent with a deuterated counterpart if necessary.  

Metabolite isolation can most simply be arranged into three phases: 1) 

homogenization, 2) extraction and 3) filtration (Figure 1.3). Homogenization serves to 

increase the available surface area of biomass that can be exposed to solvent during 

the extraction phase. Common laboratory methods that can be employed to 

homogenize samples include mortar and pestle, blender, or ball milling, all of which 

result in pulverization of biomass into a fine powder (Weckworth, 2006; Charlton et al., 

2004; Lin, Wu, Tjeerdema, & Viant, 2007; Sobolev, Brosio, Gianferri, & Segre, 2005). 
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Figure 1.3. Schematic representation of the process of metabolite isolation. 
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The next step is to separate low molecular weight molecules from cells and 

macromolecules. It is also imperative that enzymes, specifically those involved in 

metabolism, are inactivated. The extraction phase is accomplished using a wide variety 

of methods, but mainly relies on solvents of varying polarity to lyse cells and separate 

metabolites from macromolecules (Belle, Harris, Williams, & Bhakoo, 2002; Gromova & 

Roby, 2010; Lin et al., 2007; Rabinowitz & Kimball, 2007; Sekiyama, Chikayama, & 

Kikuchi, 2011). The method chosen for the extraction phase will depend primarily on the 

species of metabolites that one intends to study.  

The final step, filtration, is intended to remove cellular debris and other insoluble 

material from the extracted metabolite solution. Furthermore, the filtration phase can 

also be used to remove undesirable macromolecules remaining in solution. The 

simplest method involves high speed centrifugation, but the use of molecular weight 

cutoff filters affords more stringent separations (Chae et al., 2010; Hallows et al., 2011; 

I. A. Lewis et al., 2010). 

Chapter 2 focuses on a novel device we developed to integrate the aforementioned 

steps into one process. The whole process shown in Figure 1.3 is streamlined and 

multiple samples can be prepared in parallel. This greatly reduces the labor and time 

required to isolate metabolites from cells or tissue. 

In general, biofluids are easier to prepare than tissues or cells. The extraction step is 

often skipped because metabolites are already present in a relatively ‘clean’ aqueous 

solution. In Chapter 4 I highlight a protocol for preparing spent cell media for NMR 
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analysis. In this straightforward method, the only requirements for sample preparation 

are the addition of D2O (to maintain a lock signal) and adjustment of the pH. 

However, the specific demands of the analysis and sample will dictate whether an 

extraction step is necessary. For example, lipids and proteins present in serum samples 

generate broad peaks that overlap with smaller, more polar metabolites, which can lead 

to quantitation errors. Lipids are easily separated by the use of strong non-polar 

solvents. 

While proteins can be removed through extraction, it was recently shown that filtering 

samples through a 3 kDa molecular weight cutoff filter provides the most reliable and 

reproducible method for preparing serum samples (Tiziani et al., 2008). It was also 

shown that lipids can be extracted from the serum component that does not pass 

through the filter. The major disadvantage to filtering is the relatively long amount of 

time required to completely filter a sample. 

Once a metabolite extract is produced, the major remaining concern is to control the 

pH of the sample. Some metabolites such as histidine or citrate are very sensitive to pH 

whereas others such as glucose are not. However, the databases listed below in Table 

1.1 contain NMR spectra collected under standardized pH conditions, and for this 

reason it is essential that biological extracts are as similar as possible. The most 

common approach is to add pH 7.4 phosphate buffer to samples. Phosphate buffer has 

the advantage of not adding a signal to the NMR spectrum. However, too much 

phosphate buffer has been shown to degrade spectral quality (Asiago et al., 2008).  
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Other buffers we have explored are MES and HEPES (which has the advantage of 

serving as an internal pH indicator) prepared to pH 7.4. These buffers produce signals 

that overlap with metabolites, but perdeuterated versions that are available from 

Cambridge Isotope Laboratories do not. It should be noted that we find adding buffer 

does not always produce the desired pH in our samples, and we often must adjust the 

pH of samples by reference to a pH meter. 

One of the most important principles of metabolomics is the ability to accurately and 

reproducibly quantify data to produce meaningful results. Therefore, while it is important 

to choose a robust method to extract metabolites, ultimately one needs to strive for 

consistency with sample preparation. 

1.5 Databases and software for NMR metabolomics 

Traditional methods for identifying even one compound in solution by NMR are time 

intensive, and from my experience, a typical metabolomics sample will have a minimum 

of 15-20 metabolites observable by NMR. Furthermore, even a small dataset will have 

more than 10 samples in order to account for controls and biological replication. This 

becomes a major bottleneck when one considers potential applications of metabolomics 

that produce hundreds of samples a day, such as clinical research. 

Two approaches are used for analyzing metabolomics data: chemometric and 

quantitative approaches. Using chemometrics, only spectral pattern and intensities are 

analyzed, which are then compared statistically for only relevant features that differ and 

distinguish sample classes. After statistical anlaysis, metabolites are then identified. 
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This has the advantage of reducing the amount of work required because only the 

important metabolites are identified. Using the quantitative approach, all detectable 

metabolites are formally identified and quantified prior to subsequent analysis. Although 

the quantitative approach yields better results (Weljie, Newton, Mercier, Carlson, & 

Slupsky, 2006), the chemometric approach is still the most commonly employed mode 

of analysis. This is likely due to ease of use and speed. 

Regardless of which method is used, metabolites must still be identified. To 

accomplish this in a time-efficient manner, we and others have chosen to take a 

bioinformatics-like approach. The chemical shifts observed in NMR are stable under 

standardized conditions. As a result standardized data can be stored in freely 

accessible databases such as those listed in Table 1.1 or purchased with commercial 

software (discussed below). The basic approach is to collect data that matches the 

standardized conditions and compare the chemical shifts to those found in a database. 

More advanced search algorithms can also try to take advantage of metabolite specific 

information such as J-coupling or peak multiplicity and relative intensity. 
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Table 1.1. Major databases housing spectral data useful for NMR-based metabolomics. 

Each database allows metabolite searching by name as well as by chemical shift.  

Database Reference 

Madison-Qindao Metabolomics 
Consortium Database (MQMCD) Cui et al., 2008 

Human Metabolome Database (HMDB) Wishart et al., 2007 

Platform for RIKEN Metabolomics (PRIMe) Akiyama et al., 2008 

Biological Magnetic Resonance Bank 
(BMRB) Markley et al., 2007 

Magnetic Resonance Metabolomics 
Database (MRMD) Lundberg et al., 2005 

NMRShiftDB Steinbeck, Krause, & Kuhn, 2003 
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Several commercial software packages are available for analysis and manipulation 

of NMR-based metabolomics data. Chenomx NMR Suite (Chenomx Inc.) is by and large 

the most widely used software for NMR-based metabolomics data analysis, although 

other commercial options include dataChord Spectrum Miner (One Moon Scientific, 

Inc.), KnowItAll Metabolomics Edition (Bio-Rad Laboratoires, Inc.) and the AMIX tool-kit 

for TopSpin (Bruker BioSpin). Each package is capable of spectral processing (only 

Chenomx and AMIX handle 2D data), automated chemometric analysis and metabolite 

quantification. Furthermore, Chenomx and KnowItAll also allow automated peak 

assignment through their provided standard spectral libraries and proprietary 

databases. Chenomx further distinguishes itself through a myriad of features such as a 

model compound simulator and a spectral library spanning metabolite data collected at 

multiple NMR field strengths and multiple pH values. 

The main advantage of commercial software is feature richness. Because they have 

been extensively developed and are backed by teams of full time software developers, a 

large effort is poured into meeting customer satisfaction and usability. On the other 

hand, commercial software can be very expensive. For example, a single one year 

license for dataChord Spectrum Miner is $900 (USD) and the price for Chenomx NMR 

Suite is by inquiry only, implying a hefty cost. 

A wide range of free software is also available and is summarized in Tables 1.2 and 

1.3. All of the software listed in Table 1.2 functions as standalone packages that allow 
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the user to directly interact with and manipulate NMR spectra. In contrast, the software 

listed in Table 1.3 is web-server based and provides graphical or text output. 

One of the major disadvantages of free software is that updates may not routinely 

occur. For example, MetaboMiner (Table 1.2) has not received an update since June 

2008. As a result, software may not always be up to date with current analytical 

methods. 

Automated peak picking and matching (finding related peaks across multiple 

spectra) are the major hurdles that all software has yet to overcome. Many of the 

software packages listed in Tables 1.2 and 1.3 attempt to address these problem, but 

ultimately fall short. Automated peak picking algorithms continue to struggle to 

distinguish noise from real signals as well as poorly resolved peaks in regions 

containing spectral overlap. Although it should be noted that the user can improve 

automated peak picking results by ensuring that spectra have high signal-to-noise, good 

phasing, minimal baseline distortion and elimination of spectral artifacts. Peak matching 

continues to struggle with overcoming chemical shift drift in biological samples. Once 

these obstacles are reliably cleared, we will likely be able to usher in an era of real-time 

data analysis, which will greatly improve the high-throughput nature of metabolomics.  
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Table 1.2. Freely available standalone software for NMR-based metabolomics data 

analysis. For software that performs automated metabolite identification, data are from 

HMDB, BMRB or PRIMe. 

Name Data input Features 

rNMR 

(I. A. Lewis, Schommer, & 

Markley, 2009) 

1D and 2D processed spectra for 

any NMR active nuclei 

• Batch analysis by region of 

interest 

• Customizable analysis 

functions 

• Use R’s chemometric 

functions 

Newton 

(Chylla, Hu, Ellinger, & Markley, 

2011) 

1D and 2D processed spectra for 

any NMR active nuclei 

• Peak reconstruction to 

handle spectral overlaps 

• Robust signal recognition 

handles chemical shift drift 

• Batch quantification 

MetaboMiner 

(J. Xia, Bjorndahl, Tang, & 

Wishart, 2008) 

Peaks lists; 1H-1H TOCSY and 

1H-13C HSQC processed spectra 

stored as high resolution PNG 

files 

• Semi-automated metabolite 

identification from 2D spectra 

• Improved compound 

identification by searching 

bio-fluid specific libraries 
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MetaboAnalyst 2.0 

(J. Xia, Mandal, Sinelnikov, 

Broadhurst, & Wishart, 2012) 

Peak lists with peak intensities 

(1D or 2D for 1H and 13C) ; 

Concentration tables 

• Produces graphical output for 

common chemometric 

anlyses 

• Pathway identification tools 

Automics 

(T. Wang et al., 2009) 
1D 1H raw spectra 

• Automated spectral 

processing and chemometric 

analysis 

The CCPN Metabolomics Project 

(Chignola et al., 2011) 
Processed 1D and 2D spectra 

• Spectrum visualization for 

compound annotation 

• Contains built-in metabolite 

library 

MetaboLab 

(C. Ludwig & Günther, 2011) 
1D and 2D raw spectra 

• Automated spectral 

processing 

• Semi-automated assignment 

of 2D spectra 
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Table 1.3. Freely available web-based software for NMR-based metabolomics data 

analysis. For software that performs automated metabolite identification, data is from 

HMDB, BMRB or PRIMe. 

Name Data input Features 

MetaboAnalyst 

(J. Xia, Psychogios, Young, & 

Wishart, 2009) 

Peak lists with peak intensities 

(1D or 2D for 1H and 13C) ; 

Concentration tables 

• Produces graphical output for 

common chemometric 

analyses 

• Pathway identification tools 

PRIMe: SpinAssign 

(Akiyama et al., 2008; 

Chikayama et al., 2010) 

Peak lists (1D or 2D for 1H and 

13C) 

• Automated peak assignment 

and annotation. 

 

COLMAR Metabolomics Web 

Portal 

(S. L. Robinette, Zhang, 

Bruschweiler-Li, & Bruschweiler, 

2008) 

1H-1H TOCSY raw spectra 

• Decompose TOCSY into 1D 

cross sections  

• Identify metabolites using 1D 

traces 

MetaboHunter  

(Tulpan, Léger, Belliveau, Culf, & 

Čuperlovic ́-Culf, 2011) 

Processed 1H spectra or peak 

lists 
• Automated peak assignment 
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All of my work has been conducted using software developed in-house. For the most 

part I have used rNMR (I. A. Lewis et al., 2009) which was developed by Ian Lewis and 

for which I conducted extensive beta-testing. This was the first software package 

designed for large scale quantitative metabolomics. While the focus was 2D NMR, 

rNMR also handles 1D data.  

The key principle behind rNMR is that analysis is performed by drawing a box 

around a region of interest (ROI). The ROI is then applied to all spectra in the dataset 

which allows the user to view all the NMR data within the ROI boundary.  

Because peaks shift to some degree across multiple samples or may be slightly 

overlapped, algorithms used for determining related peaks across multiple samples are 

prone to failure. Using ROIs eliminates this problem by allowing the user to rapidly 

inspect the data inside the ROIs. This approach allowed us to greatly reduce the 

amount of time required for data analysis. 

The latest software from our laboratory is Newton (Chylla et al., 2011), which is 

being developed by Roger Chylla and for which I have also conducted extensive beta-

testing. Newton borrows many ideas from rNMR, such as batch analysis and ROIs, but 

also introduces new concepts such as peak modeling by fast maximum likelihood 

reconstruction. These improvements allow for better peak picking in regions of spectral 

overlap, reliable peak matching and improved metabolite quantitation. Future 

enhancements will allow better metabolite identification by matching metabolite specific 
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spectral patterns in samples to database standards. Newton can be used for 1D and 2D 

data analysis. 

As both commercial and free software continue to mature, the ability to rapidly and 

accurately analyze complex mixtures of metabolites will improve. Databases are 

constantly expanding metabolite coverage and software used for analysis implements 

for rigorous algorithms for peak picking and matching. These improvements are 

essential for the long term success of metabolomics.  

1.6 Continuing application and development of metabolomics 

The application of metabolomics-based research has seen an explosion in the last 

decade. Consequently, a tremendous effort has been placed on continued methods 

development and improvement. In the following chapters I present various projects I 

have undertaken that involved applications of NMR-based metabolomics or the 

development of new research methods.  
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Chapter 2 

Semi-automated device for batch extraction of metabolites from tissue samples 

 

Adapted from: 

 

Ellinger J, Miller D, Lewis I, Markley J (2012) Semiautomated Device for Batch 

Extraction of Metabolites from Tissue Samples. Analytical Chemistry 84, 1809-1812 

 

My role in this project: I helped design and refine the apparatus, tested it thoroughly, 

and wrote the first draft of the manuscript.  
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2.1 Abstract  

Metabolomics has become a mainstream analytical strategy for investigating 

metabolism. The quality of data derived from these studies is proportional to the 

consistency of the sample preparation. Although considerable research has been 

devoted to finding optimal extraction protocols, most of the established methods require 

extensive sample handling. Manual sample preparation can be highly effective in the 

hands of skilled technicians, but an automated tool for purifying metabolites from 

complex biological tissues would be of obvious utility to the field. Here, we introduce the 

semi-automated metabolite batch extraction device (SAMBED), a new tool designed to 

simplify metabolomics sample preparation. We discuss SAMBED’s design and show 

that SAMBED-based extractions are of comparable quality to extracts produced through 

traditional methods (13% mean coefficient of variation from SAMBED versus 16% from 

manual extractions). Moreover, we show that aqueous SAMBED-based methods can be 

completed in less than a quarter of the time required for manual extractions. 
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2.2 Introduction 

Metabolomics sample preparation methods can be divided into three main phases, 

1) homogenization, 2) metabolite extraction, and 3) sample filtration. Each of these 

steps plays a direct role in the overall yields and error rates associated with metabolite 

isolation from biological tissues. Given the paramount importance of consistent sample 

preparation to metabolomics (Weckworth, 2006; Lin et al., 2007; Rabinowitz & Kimball, 

2007; Sekiyama et al., 2011), surprisingly few tools are available for automating sample 

preparation and ensuring consistent metabolite extraction. This is particularly 

problematic for nuclear magnetic resonance (NMR) spectroscopic studies, which require 

large sample sizes and substantial volumes of solvents.  

Several commercial devices are currently available to automate sample preparation. 

The Precellys 24 (Bertin Technologies), gentleMACS® Dissociator (Miltenyi Biotec) and 

Tissuelyser (Qiagen). Furthermore, recent studies have shown that these devices are 

effective for medium to high throughput preparation of metabolite extracts (Geier, Want, 

Leroi, & Bundy, 2011; Römisch-Margl et al., 2011; H. Wu, Southam, Hines, & Viant, 

2008; J. Wu, An, Yao, Wang, & Tang, 2010). However, these devices focus on 

automating the homogenization process, while addition of extraction solvents and 

sample filtration has not been fully streamlined. 

In this report, we introduce the semi-automated metabolite batch extraction device 

(SAMBED). SAMBED is a new tool that supports the parallel extraction of metabolites 

from NMR-scale samples. Our goal in designing SAMBED was to integrate all of the 
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requisite steps of sample preparation into a single platform while maintaining flexibility 

with respect to a range of extraction solvents. Consequently, SAMBED was constructed 

from autoclavable materials that are tolerant of both water and organic solvents and 

operates effectively at temperatures ranging from 4 to 100° C. Our prototype 

accommodates six parallel extractions and is designed for processing large samples 

(0.05 – 1 g of tissue). Although SAMBED’s scale makes it most appropriate for NMR-

based metabolomics, the design could be rescaled for smaller samples, such as those 

used in mass spectrometry. 

SAMBED is composed of six integrated components: (1) milling chamber, (2) 

vibrational shaker, (3) solvent reservoir, (4) homogenization platform, (5) filtration 

chamber and (6) filtration platform (Figures 2.1-6). The system is powered by 

compressed air supplied from a conventional air compressor. Biological tissues are 

placed in the milling chamber and are homogenized by ball milling in the vibrational 

shaker. Our custom milling chamber (Figure 2.2) has a pneumatically-controlled plunger 

in its base that allows extraction solvents to be injected directly into the chamber and 

raw extracts to be transferred to the downstream filter chambers (Figure 2.6). A pre-

allocated volume of extraction solvent flows from the solvent reservoir into the milling 

chamber by gravity. Homogenate is then transferred via the fluid delivery system to a 

filtration chamber, where metabolites are separated from cellular debris and 

macromolecules by ultrafiltration. 
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Figure 2.1. Photograph of the major components of the assembled SAMBED. The air 

compressor and vibrational shaker are not shown.  
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Figure 2.2. Photograph of a deconstructed milling chamber. 



 41 

 

 

Figure 2.3. Photograph of the solvent reservoir attached to the filtration platform. The 

solvent reservoir consists of 6 canisters, each of which delivers a pre-allocated 

volume of extraction solvent to a single milling chamber.  
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Figure 2.4. Photograph of the vibrational shaker. 
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Figure 2.5. Photograph showing milling chambers resting on the homogenization 

platform. 
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Figure 2.6. Photograph of a deconstructed filtration chamber. 
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2.3 Experimental Section 

Manual sample processing 

Bovine liver was obtained from a local grocery store. The liver was frozen, 

lyophilized, and aliquoted into 500−600 mg (large samples) or 100−150 mg (small 

samples) portions. Metabolites were extracted by following established aqueous (I. A. 

Lewis et al., 2010) (Chae et al., 2010) (Hallows et al., 2011) or organic protocols 

(Rabinowitz & Kimball, 2007) (Bennett et al., 2009). Briefly, dry liver samples (large 

samples for aqueous extractions and small samples for organic extractions) were 

homogenized with a rounded glass rod, then suspended in either 16 ml of 95° C 

deionized water (aqueous extraction) or 3 ml of -20° C 40:40:20 Acn:MeOH:H2O 

(organic extraction). Aqueous extractions were vortexed and incubated in a 95° C water 

bath for 7.5 min then placed on ice for 10 min to cool. Organic extractions were vortexed 

and stored at 4° C for 15 min. Following extraction, all samples were vortexed and 

centrifuged at 10,000 RPM for 10 min (4° C). Supernatants from aqueous extracts were 

transferred to pre-washed centrifugal microfilters (3000 Da cutoff, Sartorius Biolab 

Products) and centrifuged at 4100 RPM for 10.5 h. The long centrifuge time was 

necessary for passing the entire sample through the filter membrane (excluding the 

200 µl dead volume). Supernatants from organic extracts were decanted into a fresh 

tube, and the pellet was re-extracted twice with 2 ml of Acn:MeOH:H2O, incubated for 5 

min at 4° C, and centrifuged. Supernatants from the two organic wash steps were 

combined with the original extract to yield a single 7-mL extract from each sample. All 
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metabolite extracts were frozen, lyophilized, and stored dry at -80° C until NMR 

analysis.  

 

Sample processing by SAMBED 

SAMBED was kept at room temperature for aqueous extractions and was conducted 

in a 4° C cold room for organic extractions. Lyophilized liver samples (large and small 

samples for aqueous extractions and small samples for organic extractions) were 

placed in each of the six milling chambers along with a 1.8 mm diameter grinding ball. 

Dry samples were milled on the shaker platform for 30 s, and either 17 mL of 95° C 

ddH2O (aqueous extractions) or 8 ml of -20° C 40:40:20 Acn:MeOH:H2O (organic 

extractions) were injected from the solvent reservoir into each chamber. Samples were 

wet-milled for an additional 30 s. For aqueous extractions, the homogenization platform 

was submerged in a 95° C water bath for 7.5 min. The homogenization platform was 

coupled to the filtration platform, and six filtration chambers (pre-chilled for one hour to 

4° C) containing pre-washed ultrafiltration membranes (3000 Da cutoff, Millipore) were 

attached. The contents of each milling chamber were transferred to the downstream 

filter chamber under compressed air at 35 psi. The pressure was increased to 70 psi, 

and filtration was allowed to progress until most of each sample had passed through the 

filtration membrane. Each milling chamber was flushed with 5 ml ddH2O, and filtration 

was allowed to progress until outflow from the filter chambers ceased. Aqueous extracts 
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were collected in tubes placed on ice. All metabolite extracts were frozen, lyophilized, 

and stored at -80° C until NMR analysis. 

NMR analysis. All dry metabolite extracts were dissolved in 800 µl (large samples) or 

200 µl (small samples) D2O containing 1 mM 2,2-dimethyl-2-silapentane-5-

sulfonate(DSS, chemical shift standard) and 500 µM NaN3 (microbial growth inhibitor). 

The resulting solution was titrated with concentrated DCl or NaOD as needed to achieve 

a glass electrode pH reading of 7.40 ± 0.01. NMR data were collected at the National 

Magnetic Resonance Facility at Madison on a 600 MHz Bruker Avance III spectrometer 

equipped with a triple-resonance (1H, 13C, 15N, 2H lock) 1.7 mm cryogenic probe. The 

probe was tuned, matched, and locked to deuterium for the first sample. Each sample 

was shimmed, and the 90° pulse width was determined. A 2D 1H-13C HSQC spectrum 

(Bruker sequence hsqcetgpsisp2.2) was then collected for each sample. Data were 

processed using custom NMRPipe (Delaglio et al., 1995) scripts written in-house. 

Metabolites were identified and quantified using the rNMR software package (I. A. Lewis 

et al., 2009) following established methods (I. A. Lewis et al., 2007). Briefly, metabolites 

were identified by submitting peak lists to the Madison-Qingdao Metabolomics 

Consortium Database (MMCD) (Cui et al., 2008); assignments were verified by 

overlaying NMR spectra of standards from the BioMagResBank (BMRB) (Markley et al., 

2007). Metabolite concentrations were calculated on the basis of calibration curves from 

metabolite standards prepared at 2, 5 and 10 mM. Peak amplitudes used for 
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quantitation were obtained by fast maximum likelihood reconstruction as implemented in 

the Newton software package (Chylla et al., 2011).  

Statistical analysis. To measure the relative consistency of manual versus SAMBED-

based preparations, we computed the coefficient of variation (CV) observed for each 

metabolite across the 18 replicates of each sample preparation method. Overall 

variability was then expressed as the mean CV associated with each method. All 

calculations were performed using the R statistical software program (www.r-

project.org). 

 

2.4 Results and Discussion  

One of the primary motivations for developing SAMBED was to make sample 

preparation more efficient by automating and parallelizing the metabolite purification 

process. Consequently, we measured the time required to prepare 18 samples (three 

trials of 6 samples each) via established aqueous (I. A. Lewis et al., 2010) (Chae et al., 

2010) (Hallows et al., 2011) and organic extraction methods (Rabinowitz & Kimball, 

2007) (Bennett et al., 2009). Sample preparation times were compared between manual 

and SAMBED-based extractions (Table 2.1). As expected, SAMBED greatly decreased 

the time required to prepare samples. SAMBED-derived extracts were generated in 

21% of the time required for manual preparation of aqueous extracts. Most of the time 

savings are attributable to the ultrafiltration step, which is 5 times more efficient by 

SAMBED because of its large surface area filters. For organic extractions, SAMBED-
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based extractions required slightly more time than manual preparation (81 versus 89 

min). However, these times are not directly comparable because the SAMBED-based 

organic extractions were subject to microfiltration whereas the manual sample 

processing method omitted this step. In contrast to the centrifugal microfilters, the filter 

membranes used by SAMBED are resistant to the Acn:MeOH:H2O solvent used in this 

study. Our data show that the additional microfiltration step only adds ~10% to the total 

processing time and comes with the clear benefit of reduced labor.  
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Table 2.1. Average times required to prepare metabolite extracts by manual and 

SAMBED-based protocols a 

Protocol Prefiltration time (min) Filtration Time (min) Total time (min) 

A (Aqueous, manual) b 51.14 ± 5.6 630 ± 0.00 681 ± 6.0 

B (Aqueous, SAMBED)b 17.02 ± 0.5 145 ± 3.0 162 ± 4.0 

C (Aqueous, SAMBED)c 18.11 ± 0.4 68.0 ± 0.9 86.1 ± 0.5 

D (Organic, manual)c  51.22 ± 3.8 30.0 ± 0.0 d 81.2 ± 3.8 

E (Organic, SAMBED)c N/A e N/A e 88.7 ± 7.8  

a Data are reported as the mean of three trials ± the  

b Large sample (500-600 mg per sample) 

c Small sample (100-150 mg per sample) 

d  Time required for high speed centrifugation  

e Separating the prefiltration and filtration times was not possible 
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A second motivation for developing SAMBED was to standardize sample processing 

by eliminating manual sample manipulation. To measure SAMBED’s success in 

producing consistent metabolite extracts, we measured variations in 29 metabolite 

levels observed in 18 liver extracts produced via traditional versus our new SAMBED-

based protocol. Two established methods, one organic the other aqueous, were 

evaluated in this study. For each metabolite, we compared the yields per gram of liver 

and the average variability of metabolite levels associated with the different protocols 

(Table 2.2). As expected, SAMBED-generated extracts were comparable to those 

prepared by an experienced technician. Metabolite concentrations observed in 

SAMBED extracts were linearly related to those observed in manual extractions across 

multiple orders of magnitude (Figure 2.7). Moreover, the mean CV of metabolites 

observed in aqueous SAMBED extracts was 12.3% whereas manual sample 

preparation resulted in a mean CV of 13.6% (N = 522). Manual preparation of organic 

extracts was the least consistent protocol tested with a mean CV of 18.1%; this 

variability was reduced to 14.1% when extracts were prepared by SAMBED. We 

attribute the more consistent performance of the organic SAMBED-based method to 

microfiltration step, which is not possible via the traditional method due to 

membrane/solvent incompatibility. 
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Table 2.2. Average amounts [nmol mg-1 dry weight liver ± standard deviation (n = 18)] 

of various metabolites extracted by manual and SAMBED protocols.  

Method used: Manual Sambed  Sambed  Manual Sambed 
Extraction: Aqueous Aqueous Aqueous Organic Organic 
Average dry mass of 
liver sample (mg): 543.1 534.8 138.2 118.5 127.4 

Metabolite [nmol mg-1 
dry weight liver ± 
standard deviation]a 

     

3HB 0.8 ± 0.09 0.88 ± 0.1 0.9 ± 0.08 0.66 ± 0.13 0.81 ± 0.15 
Ace 1.4 ± 0.24 8.33 ± 1.45 10.51 ± 3.15 4.88 ± 0.9 6.1 ± 0.77 
Ala 16.68 ± 2.32 22.95 ± 2.53 30.11 ± 2.9 26.49 ± 3.33 21.76 ± 4.12 
Asp 2.77 ± 0.33 3.06 ± 0.31 3 ± 0.46 2.53 ± 0.56 3.11 ± 0.74 
Bet 0.37 ± 0.05 0.46 ± 0.07 0.57 ± 0.1 0.77 ± 0.23 0.48 ± 0.1 
Crn 24.5 ± 3.49 30.84 ± 2.4 35.12 ± 1.66 44.26 ± 8.17 37.79 ± 3.16 
Cho 11.2 ± 1.24 16.36 ± 1 18.31 ± 1.03 20.34 ± 2.71 19.8 ± 1.94 
Crt 4.75 ± 0.62 5.85 ± 0.83 6.41 ± 0.6 6.16 ± 0.87 5.02 ± 0.59 
Fru 11.09 ± 0.74 14.51 ± 1.14 17.89 ± 1.38 17.82 ± 2.27 16.03 ± 1.57 
Gln 3.55 ± 0.33 3.78 ± 0.52 4.79 ± 0.42 3.89 ± 0.52 3.89 ± 0.88 
Glu 21.56 ± 4.61 18.32 ± 1.7 19.5 ± 1.53 31.71 ± 2.2 34.26 ± 2.02 
Glc 344.8 ± 27.85 357.17 ± 27.06 396.64 ± 28.61 383.42 ± 21.1 387.07 ± 18.95 
Gly 35.67 ± 3.12 37.53 ± 2.25 40.12 ± 1.96 39.06 ± 1.66 43.25 ± 5.12 
Ile 2.61 ± 0.4 3.2 ± 0.39 3.31 ± 0.42 3.22 ± 0.35 3.44 ± 0.25 

Lac 63.95 ± 7.35 54.33 ± 6.35 70.33 ± 7.48 78.21 ± 11.91 72.73 ± 5.39 
Leu 6.37 ± 0.89 8.32 ± 0.94 8.46 ± 1.11 7.64 ± 0.87 8.11 ± 0.57 
Lys 5.84 ± 0.79 7.65 ± 0.81 8.31 ± 1.1 4.22 ± 0.58 6.43 ± 1.31 
Man 3.21 ± 0.36 3.42 ± 0.39 4.64 ± 0.67 3.16 ± 0.84 3.06 ± 0.84 
Met 1.69 ± 0.3 1.93 ± 0.28 1.83 ± 0.43 0.87 ± 0.38 1.48 ± 0.27 
Orn 3.97 ± 0.42 3.89 ± 0.48 4.51 ± 0.42 1.42 ± 0.3 3.65 ± 0.66 
Pan 0.48 ± 0.05 0.84 ± 0.22 0.79 ± 0.04 0.67 ± 0.23 0.66 ± 0.08 
Phe 2.86 ± 0.41 3.34 ± 0.4 3.43 ± 0.58 2.72 ± 0.42 3.36 ± 0.32 
Pro 4.27 ± 0.38 6.08 ± 0.62 6.73 ± 0.62 5.97 ± 1.49 5.58 ± 0.59 
Ser 5.81 ± 0.75 7.68 ± 0.85 8.15 ± 1.04 7.95 ± 0.83 7.86 ± 0.67 
Suc 22.35 ± 2.68 24.67 ± 1.95 28.74 ± 1.77 31.82 ± 2.4 33.99 ± 1.13 
Tau 4.04 ± 1.02 3.63 ± 0.71 4.7 ± 0.72 3.18 ± 1.03 2.67 ± 0.77 
Thr 4.39 ± 0.74 4.78 ± 0.55 4.45 ± 0.39 3.98 ± 0.67 4.16 ± 0.71 
Ura 2.24 ± 0.57 2.52 ± 0.6 2.89 ± 0.69 2.69 ± 1.03 2.56 ± 0.62 
Val 4.76 ± 0.64 6.1 ± 0.72 6.22 ± 0.77 5.73 ± 0.59 6.34 ± 0.61 

Mean CV 13.6 12.3 11.9 18.1 14.1 
aAll amino acids are represented by their standard three-letter code; 3HB, 3-hydroxybutrytate; 

Ace, acetate; Bet, betaine; Crn, carnitine; Cho, choline; Crt, creatine; Fru, fructose; Lac, lactate; 

Man, mannose; Orn, ornithine; Pan, pantothenate; Suc, succinate; Tau, taurine; Ura, uracil. 
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Figure 2.7. Linear relationship of the metabolite levels measured by manual or 

SAMBED processing for A) aqueous and B) organic extractions. SAMBED-derived 

metabolite levels (n = 522) are plotted relative to the mean abundance for each 

metabolite observed in the manual-derived extracts. The dotted black line indicates 

the theoretical ideal regression (slope = 1). In the case of aqueous extractions, only 

data from large samples are shown. 
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Previous research has shown automated sample preparation is feasible and can 

produce consistent results (Geier et al., 2011; Römisch-Margl et al., 2011; H. Wu et al., 

2008; J. Wu et al., 2010). Minimizing technical error is a critical design feature of 

automated sample preparation tools. The mean CV values for SAMBED-based extracts 

reported here (12 - 14%) compare favorably to those reported for other automated tools 

(15 - 30%)(Geier et al., 2011; Römisch-Margl et al., 2011).  

2.5 Conclusions 

We have developed and tested SAMBED, a new device that streamlines and 

automates the isolation of metabolites from biological tissues. SAMBED consistently 

generates metabolite extracts that are of comparable, or slightly better, quality than 

those generated by traditional methods. Our design allows aqueous extractions to be 

completed in a fraction of the time required for manual sample processing, and the 

materials used in SAMBED support a wide range of extraction conditions. In summary, 

SAMBED simplifies one of the most laborious aspects of metabolomics studies without 

affecting data quality.  
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3.1 Abstract 

Human erythrocytes require a continual supply of glutamate to support glutathione 

synthesis, but are unable to transport this amino acid across their cell membrane. 

Consequently, erythrocytes rely on de novo glutamate biosynthesis from α-ketoglutarate 

and glutamine to maintain intracellular levels of glutamate. Erythrocytic glutamate 

biosynthesis is catalyzed by three enzymes, alanine aminotransferase (ALT), aspartate 

aminotransferase (AST), and glutamine aminohydrolase (GA). Although the presence of 

these enzymes in RBCs has been well documented, the relative contributions of each 

pathway have not been established. Understanding the relative contributions of each 

biosynthetic pathway is critical for designing effective therapies for sickle cell disease, 

hemolytic anemia, pulmonary hypertension, and other glutathione-related disorders. In 

this study, we use multidimensional 1H-13C nuclear magnetic resonance (NMR) 

spectroscopy and multiple reaction mode mass spectrometry (MRM-MS) to measure the 

kinetics of de novo glutamate biosynthesis via AST, ALT, and GA in intact cells and 

RBC lysates. We show that up to 89% of the erythrocyte glutamate pool can be derived 

from ALT and that ALT-derived glutamate is subsequently used for glutathione 

synthesis.   

3.2 Introduction  

Glutathione (GSH) plays a central role in repairing oxidative damage to red blood 

cells (RBCs). Alterations in glutathione levels have been linked to a variety of human 

disorders, including sickle cell disease, hemolytic anemia, and pulmonary hypertension 
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(G. Wu, Fang, Yang, Lupton, & Turner, 2004). Although all of the enzymes required for 

synthesizing glutathione from its component amino acids (glutamate, cysteine, glycine) 

are present in erythrocytes (Majerus, Brauner, Smith, & Minnich, 1971; Minnich, Smith, 

Brauner, & Majerus, 1971), the RBC membrane is essentially impermeable to glutamate 

(Sass, 1968; Winter & Christensen, 1964; D. J. Young et al., 1987). Consequently, 

RBCs rely on de novo glutamate biosynthesis to maintain intracellular levels of this 

amino acid.  

RBCs contain three enzymes for synthesizing glutamate: alanine aminotransferase 

(ALT; EC 2.6.1.2), aspartate aminotransferase (AST; EC 2.6.1.1), and glutamine 

aminohydrolase (GA; EC 3.5.1.2). ALT and AST synthesize glutamate from α-

ketoglutarate whereas GA synthesizes glutamate from glutamine (Figure 3.1). Since 

RBC membranes are permeable to both α-ketoglutarate and glutamine (Griffith, 1981; 

Sass, 1968; J. D. Young, Wolowyk, Jones, & Ellory, 1983) all three mechanisms can 

potentially influence intracellular glutamate levels. However, GA is generally thought to 

be the main contributor to RBC glutamate biosynthesis (Ellory, Preston, Osotimehin, & 

Young, 1983; Griffith, 1981; Morris et al., 2008; Niihara, Zerez, Akiyama, & Tanaka, 

1997). 
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Figure 3.1 Reaction mechanisms for I) alanine aminotransferase (ALT) and II) 

aspartate aminotransferase (AST). Unlike glutamate, both alanine and α-

ketoglutarate cross the RBC membrane; ALT and AST provide a mechanism for de 

novo glutamate production that could support glutathione biosynthesis. 



 60 

We recently reported that roughly one percent of the glucose consumed by RBCs 

incubated in an amino acid free medium is devoted to de novo alanine production (I. A. 

Lewis, Campanella, Markley, & Low, 2009). Since ALT is the only enzyme for 

synthesizing alanine in RBCs, this result suggests that ALT activity can have a 

significant impact on steady-state glutamate levels. Given that ALT and AST reactions 

are readily reversible, and that the substrates for the ALT and AST reactions are 

normally present in the serum (Wishart et al., 2007), we reasoned that aminotransferase 

reactions may be playing a significant, and currently underappreciated, role in RBC 

glutamate biosynthesis in vivo.  

Although most of the transport and enzymatic kinetics associated with RBC 

glutamate metabolism are known (Griffith, 1981), the relative biosynthetic capacities of 

ALT, AST, and GA have not been directly evaluated in intact cells. Understanding the 

relative contribution of each pathway is important for designing effective therapies for 

diseases related to glutathione deficiencies. In this study, we apply modern 

metabolomics techniques to measure the biosynthetic capacities of AST, ALT, and GA 

in intact cells and hemolysates. Using multidimensional 1H-13C nuclear magnetic 

resonance (NMR) spectroscopy and multiple reaction mode mass spectrometry (MRM-

MS) we show that ALT can contribute up to 89% of the intracellular glutamate pool and 

that ALT-derived glutamate is incorporated into glutathione. These data argue that 

aminotransferase reactions are more significant than GA in influencing steady-state 

levels of glutamate in vivo. 



 61 

3.3 Methods 

Preparation of RBCs and lysates 

Fresh blood was collected by venipuncture from healthy human volunteers (n = 3) 

into heparinized vacutainers. RBCs were isolated by centrifugation (10 min at 

3,000 × g), and the buffy coat was discarded. Samples were washed three times in 

isotonic HEPES buffer (25 mM HEPES, 1 mM NaH2PO4, 106 mM NaCl, 19 mM KCl, 

1 mM CaCl2, pH 7.4), combined into a single pool, and resuspended at 20% hematocrit 

in HEPES buffer containing 20 IU/mL Penicillin/Streptomycin (Gibco). Lysates were 

prepared from washed RBCs suspended at 36% hematocrit. RBCs were hemolyzed by 

sonication for 1 min and the resulting lysates were diluted to the equivalent of 25% 

hematocrit with isotonic HEPES buffer containing metabolite standards (see 

aminotransferase activity assays in RBC lysates). All sample preparations were 

conducted at 4 °C to minimize metabolic activity. 

 

Metabolic activity assays in intact RBCs 

Washed RBCs were prepared in isotonic HEPES buffer containing either (i) 5 mM 

[U-13C]-glucose (Isotec), (ii) 5 mM glucose, 5 mM alanine, and 5 mM [13C1,2,3,4]-α-

ketoglutarate (Cambridge Isotope Laboratories) or (iii) 5 mM glucose and 1 mM [U13C-

15N] glutamine. Each RBC suspension was split into three replicate samples, which 

were incubated at 37 °C over periods of (i, iii) 12 h or (ii) 21 h. Aliquots (1 mL) were 

collected from samples after incubation times of 0, 1.5, 3, 6, 12, and 21 h (only ii) and 
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flash frozen in liquid nitrogen. Metabolites were then extracted from each sample (as 

described below) and analyzed by NMR spectroscopy and MS for the presence of 

isotopically enriched molecules. Enriched metabolites were identified and quantified by 

NMR, and the isotopic enrichments were determined by MS. Samples containing [U-

13C]-glucose (i) provided information about glycolytically-related metabolism; samples 

containing [13C1,2,3,4]-α-ketoglutarate (ii) provided information on aminotransferase 

reactions; and samples containing [U13C-15N] glutamine (iii) provided information on 

glutamine aminohydrolase activity. 

 

Aminotransferase activity assays in RBC lysates 

RBC lysates were incubated at 37 °C for 6−12 h in isotonic HEPES buffer containing 

200 μM pyridoxal-5!-phosphate (PLP; the cofactor required by aminotransferases) and 

one of the following pairs of substrates (5 mM each): pyruvate + glutamate for alanine 

aminotransferase (ALT) assays, alanine + α-ketoglutarate for reverse ALT assays, 

oxaloacetate + glutamate for aspartate aminotransferase (AST) assays, aspartate + α-

ketoglutarate for reverse AST assays, and pyruvate plus one of each of the amino acids 

listed in Figure 3.3 for aminotransferase screening assays. Aliquots (900 μL) of each 

sample were collected after 0, 1, 3, 6 and 12 h of incubation and flash frozen in liquid 

nitrogen. Metabolites were then extracted (as described below) and analyzed by NMR.  

Metabolite extraction  



 63 

Samples were placed in a boiling water bath for 7.5 min to lyse cells and halt 

enzymatic activity. Boiled lysates were spun at 16,000 × g to pellet cellular debris. For 

samples to be analyzed by LC-MS/MRM, a 200 μL aliquot of each supernatant was 

transferred to a fresh tube and stored at -80 °C until analysis. For samples to be 

analyzed by NMR, an 800 μL aliquot of each supernatant was dried in a SpeedVac 

Concentrator (Thermo Scientific), and the resulting residue was dissolved in 800 μL D2O 

containing 500 μM NaN3 and 500 μM 3-trimethylsilylpropane-1-sulfonate(DSS). 

 

NMR spectroscopy  

NMR data were collected at the National Magnetic Resonance Facility at Madison. 

Two-dimensional sensitivity enhanced 1H-13C HSQC spectra were collected on a Varian 

600 MHz spectrometer equipped with a cryogenic probe. Spectra were collected, 

following 16 transients to achieve steady state, as four averaged transients with 128 

increments in the second dimension (50 increments for the in vivo labeling studies). The 

acquisition time was 300 ms (3,000 data points), following an initial delay of 1 s; the 

carbon spectral width was 70 ppm. Time-domain data were Fourier transformed with a 

shifted exponential sine-bell window function, phased, and chemical shift referenced to 

DSS using custom nmrDraw (Delaglio et al., 1995) scripts written in-house. 

Our methods for identifying and quantifying metabolites by 1H-13C NMR have been 

described elsewhere (I. A. Lewis et al., 2007; I. A. Lewis et al., 2009). Briefly, 

metabolites were identified using the Madison Metabolomics Consortium Database 
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(MMCD) (Cui et al., 2008); assignments were verified by overlaying NMR spectra of 

standards from the BioMagResBank (BMRB) (Markley et al., 2007); metabolite 

concentrations were calculated from peak intensities on the basis of calibration curves 

from metabolite standards prepared at 2, 5, and 10 mM. The rNMR software package (I. 

A. Lewis et al., 2009) was used in performing all NMR data analyses. 

 

Mass spectrometry 

Mass spectra were collected at the University of Wisconsin Biotechnology Center 

Mass Spectrometry Facility. An aliquot (5 µL) of each metabolite extract was analyzed 

by liquid chromatography (LC) MS on an Applied Biosystems 3200 Q TRAP LC-MS/MS 

system equipped with an Agilent 1100 series capillary LC pump and an electrospray 

ionization (ESI) source. Online LC used a 4.6 mm × 150 mm Phenomenex Luna 

hydrophylic interaction chromatography (HILIC) column (200-Å pore size, 5-µm particle 

size) with a constant flow rate of 200 µL/min. Samples were eluted over a 48-min 

ammonium formate (50 mM, pH 5.4; buffer A) to acetonitrile gradient. The elution 

gradient was constructed as follows: 90% A at time zero, 70% A at 20 min, holding at 

70% A for 2 min, 10% A at 22 min, holding at 10% A for 1 min, back to 90% A at 23 min, 

and isocratic at 90% A until 48 min. ESI-MS was performed in positive ion multiple 

reaction mode (MRM). Peak picking and integration were accomplished with Analyst 

software (Applied Biosystems). Metabolite identification, retention times, and ion 

fragment patterns, were verified by reference to standard compounds. The Kombyonyx 
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isotope calculator (www.kombyonyx.com) was used to calculate isotopomer 

distributions. 

 

Regression analyses and statistics  

Rates of metabolite consumption and production were calculated by linear 

regression of metabolite concentration as a function of time. Regression analyses were 

based on all time points, except for samples incubated with aspartate + α-ketoglutarate 

and oxaloacetate + glutamate. Kinetics observed in the latter samples were nonlinear 

because of spontaneous decarboxylation of oxaloacetate to pyruvate (Hatch & Heldt, 

1985). For these samples, initial rates were determined from the time points between 0 

and 1 h. Samples incubated with [13C1,2,3,4] α-ketoglutarate contained contaminating 

[13C1,2,3,4] glutamate, which was determined from the 0 h time points and used as a 

baseline for subsequent measurements. Glutamate kinetics from cells incubated with 

[13C1,2,3,4] α-ketoglutarate were derived from linear regression of the first three time 

points. All of the p values presented here were derived from a two-tailed equal variance 

t-test.  

3.4 Results 

Reports of de novo alanine synthesis by intact RBCs (I. A. Lewis et al., 2009; 

Manuel y Keenoy et al., 1991) suggest an active role for aminotransferases in 

maintaining intracellular glutamate levels. We confirmed these reports by incubating 

RBCs in 5 mM [U-13C] glucose and measuring the appearance of 13C enriched alanine 
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by 1H-13C NMR (Figure 3.2). The rate of 13C alanine production we observed 

(0.022 ± 0.001 μmol mL-1 RBC h-1) is consistent with our previous findings and 

accounted for 1.1% of the total 13C output (Table 3.1). LC-ESI-MS analyses indicated 

that 35% of the total alanine pool was uniformly 13C labeled after 12 h of incubation with 

[U-13C] glucose, whereas samples harvested at 0 h showed natural abundance 13C 

levels (Table 3.2). 
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Figure 3.2 Glucose, lactate, alanine, and pyruvate metabolism observed in human 

RBCs. Samples were incubated with 5 mM [U-13C] glucose and metabolites were 

quantified by 1H-13C NMR. Error bars represent S.E.M. (n = 3).  
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Table 3.1 Rates of glucose, lactate, alanine, pyruvate and glutamate metabolism 

observed in intact RBCs 

 Observed rates of biosynthesis from the labeled substrate  

(μmol ml-1 RBC hr-1)a 

Metabolite(s) added Glucose Lactate Alanine Pyruvate Glutamate α-Ketoglutarate 

[U-13C6] glucose -0.78±0.03 1.89± 0.01 0.02±0.001 0.01±0.002 n.o.b n.o.b 

[13C1,2,3,4] α-ketoglutarate 
glucose 
alanine 

-0.80± 0.01c 1.35±0.02c -0.11±0.07c 0.57±0.04c 0.17 ±0.01c -0.16±0.06c 

[U13C-15N] glutamine  
glucose 

-0.9±0.03 2.13±0.04 n.o.b n.o.b 0.004±0.001 n.o.b 

 

a Means and S.E.M. for n = 3 

b n.o. = not observed 

c 21 h time point was excluded in the rate calculation 
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Table 3.2 Isotopomer distribution of alanine in RBCs incubated with [U-13C] glucose  

  Percent mass isotopomer distribution (alanine)a 

Time (h) Monoisotopic M+1 M+2 M+3 M+4 

0 95.6±0.4 2.43±0.63 n.d.b 1.94±0.51 0 

12 60.6±1.1** 4.04±0.04* n.d.b 35.4±1.1** 0 

Expected distribution due 

to natural abundance 
95.92 3.62 0.44 0.01 0 

 

a Means and S.E.M. for n = 3 

b n.d. = not determined 

* p < 0.05; ** p < 0.001 
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Aminotransferase activity in RBC lysates 

To screen for alanine synthesis reactions, we incubated RBC lysates for 6 h in 

HEPES buffered saline containing 5 mM pyruvate, 200 µM pyridoxal-5!-phosphate 

(PLP), and 5 mM target amino acid. 1H-13C NMR analysis of the lysates showed 

significant alanine and α-ketoglutarate production in the sample incubated with 

glutamate as the target amino acid (Figure 3.3).  
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Figure 3.3 Aminotransferase screening assay used to determine the alanine 

biosynthetic route in human RBCs. Cell lysates were incubated with 200 μM 

pyridoxal-5!-phosphate, 5 mM pyruvate, and 5 mM of a target amino acid. Each 

square shows the unique 1H-13C NMR sub-spectrum used to identify and quantify 

each metabolite observed in the RBC lysates. Row labels denote the compounds 

added to samples, and column labels denote metabolite signals observed by 1H-13C 

NMR. In the first row, no amino acid was added in addition to pyruvate; in 

subsequent rows, the indicated amino acid was added in addition to pyruvate. 

Abbreviations: Pyr, pyruvate; αKG, α-ketoglutarate; amino acids are represented by 

standard three letter code. ‡The samples prepared with glutamate showed signals 

from both the substrate (glutamate) and the two products (alanine and α-

ketoglutarate). †Samples incubated with glutamine showed no detectable levels of 

GA activity. However, GA activity was detectable by MS. 
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Conversion of glutamate + pyruvate to α-ketoglutarate + alanine in the presence of 

PLP is consistent with the established alanine aminotransferase (ALT) reaction 

mechanism (Figure 3.1) and is indicative of aminotransferase activity in the lysates. 

However, ALT is present in serum, and contaminating enzyme from the wash medium 

could influence our results. To control for contaminating ALT, both serum and the final 

RBC wash buffer were assayed for ALT activity using the method we applied to the 

RBC lysates. Although ALT activity was observed in serum samples (2.82 ± 0.32 µmol 

alanine produced over 12 h), the final RBC wash buffer showed no detectable ALT 

activity (Figure 3.4). These findings demonstrate that our assay is sufficiently sensitive 

to detect serum levels of ALT and that the ALT activity observed in RBC lysates did not 

result from extracellular ALT. 
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Figure 3.4. Metabolic activity of final wash buffer used for RBC preparation. 1H-

13C NMR signals indicating no detectable aminotransferase activity after 12 h of 

incubation. Abbreviations: αKG, α-ketoglutarate; Pyr, pyruvate; amino acids are 

represented by their three letter codes. 
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Glutamate biosynthesis via aminotransferase reactions can be limited by either 

transport or reaction kinetics. To determine the maximum enzymatic rates of the AST 

and ALT reactions under physiologically-relevant conditions with naturally-occurring 

levels of enzymes, we incubated RBC lysates for 12 h with 200 µM PLP and saturating 

levels of substrates for the two aminotransferases (Figure 3.1). We determined both the 

forward and reverse reaction rates for each aminotransferase. 1H-13C NMR analysis of 

the lysates showed efficient conversion of α-ketoglutarate to glutamate in the presence 

of either aspartate or alanine (5.32 ± 0.45 and 0.42 ± 0.03 μmol mL-1 lysate hour-1, 

respectively), indicating that RBCs have a high enzymatic capacity for both AST and 

ALT reactions. Similarly, glutamate was efficiently converted to α-ketoglutarate in the 

presence of either pyruvate or oxaloacetate (Figure 3.5). As expected, rate constants 

observed for the forward and reverse reactions were comparable (Table 3.3).  
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Figure 3.5. Aminotransferase reactions catalyzed by (A,B) alanine 

aminotransferase and (C,D) aspartate aminotransferase observed in human RBC 

lysates. Samples were incubated with 5 mM of each substrate and analyzed by 

1H-13C NMR. The title of each plot indicates which substrates were added. Error 

bars represent S.E.M. (n = 3). 
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Table 3.3. Rates of ALT and AST aminotransferase reactions observed in RBC lysates.  

  Observed rates (μmol mL-1 lysate hour-1)a 

Metabolites added Alanine α-Ketoglutarate Aspartate Glutamate Pyruvate 

alanine+α-ketoglutaratee -0.78±0.11 -0.77±0.08 n.o.b 0.42±0.03 0.46±0.03 

glutamate+pyruvatee 0.94±0.03 0.57±0.01 n.o.b -0.76± 0.04 -0.46±0.06 

aspartate+α-ketoglutaratef 0.49±0.17 -3.23±0.75c -5.85±0.30c 5.32±0.45c 0.73±0.05 

glutamate+oxaloacetatef -0.73±0.05 2.13±0.54c 1.98±0.53c -1.87±0.28c -0.18±0.04 

 

a Means and S.E.M. for n = 3 

b n.o. = not observed 

c rate was calculated using the first two time points 

e ALT pathway 

f AST pathway 
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Interpretation of the AST reaction is complicated by the rapid spontaneous 

degradation of oxaloacetate to pyruvate (Hatch & Heldt, 1985). RBC lysates incubated 

with aspartate + α-ketoglutarate showed rates of alanine production comparable to 

samples incubated with pyruvate + glutamate (Table 3.3). This non-intuitive result is 

caused by a three-part coupled reaction involving conversion of aspartate to 

oxaloacetate via AST, spontaneous degradation of oxaloacetate to pyruvate (Hatch & 

Heldt, 1985), and the subsequent conversion of pyruvate to alanine via ALT. 

 

Glutamate and glutathione synthesis in intact RBCs 

GA is generally considered to be the main glutamate biosynthesis pathway in RBCs 

(Ellory et al., 1983; Griffith, 1981; Morris et al., 2008; Niihara et al., 1997), but the high 

levels of ALT and AST activity we observed in RBC lysates suggest that 

aminotransferases can have a significant impact on steady-state glutamate levels. 

However, the extent to which aminotransferases contribute to glutamate biosynthesis in 

intact cells is limited by the transport rates for the various substrates. Aspartate 

transport previously has been shown to be low (5 µM h-1) (Fincham, Mason, Paterson, & 

Young, 1987; Maede, Inaba, & Taniguchi, 1983), and thus is a limiting factor in AST-

derived glutamate production. However, the substrates of the GA and ALT reactions 

previously were shown to be efficiently transported at similar rates (108 and 256 µM h-1, 

for glutamine and alanine respectively) (Ellory et al., 1983; Niihara et al., 1997), which 

argues that both GA and ALT reactions contribute to the glutamate pool. To determine 
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the relative contributions of ALT and GA to the total glutamate pool of intact cells, we 

incubated RBCs with 13C labeled precursors of the ALT and GA reactions and 

measured the appearance of 13C in glutamate and glutathione by 1H-13C NMR and LC-

MS/MRM.  

Rates of ALT-derived glutamate were derived from RBCs incubated for 21 h with 

glucose, alanine, and [13C1,2,3,4] α-ketoglutarate (5 mM each). Intact RBCs produced 

13C-enriched glutamate at an average rate of 0.17 μmol mL-1 RBC h-1 and consumed 

alanine at a rate of 0.11 μmol mL-1 RBC h-1 (Table 3.1). MS analysis showed that 89% 

(p < 0.001 relative to natural abundance) of the RBC glutamate pool was [13C1,2,3,4] 

labeled after 21 h (Table 3.4), indicating active de novo glutamate synthesis by intact 

cells. Although ALT-derived glutathione biosynthetic rates were below the NMR 

detection limit, MS analysis showed significant (p < 0.05 relative to natural abundance) 

13C1,2,3,4 isotopic enrichment in the glutamate moiety of glutathione at the 21 h time point 

and time-dependent enrichment of glutathione over the course of the experiment 

(Table 3.5). Rates of GA-derived glutamate production were derived from RBCs 

incubated in glucose (5 mM) and [U13C-15N] glutamine (1 mM). GA-derived glutamate 

was produced at a rate 30 times lower (0.0039 ± 0.00065 μmol mL-1 RBC h-1) than rates 

observed for ALT-derived glutamate (Table 3.1).  
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Table 3.4. Isotopomer distribution of glutamate in RBCs incubated with [13C1,2,3,4] α-

ketoglutarate, alanine, and glucose. 

  Percent Mass isotopomer distribution (glutamate)a 

Time (h) Monoisotopic M+1 M+2 M+3 M+4 

0 95.3±1.7 4.66±1.66 0 0 0 

6 15.9±0.7** 0.72±0.08** 0.10±0.10 2.52±0.37* 80.8±0.3** 

12 10.4±0.7** 0.41±0.01** 0 3.08±0.55* 86.1±0.9** 

21.25 7.47±0.24** 0.24±0.01** 0 2.82±0.14* 89.4±0.3** 

Expected distribution due 

to natural abundance 
93.40 5.64 0.91 0.05 0.00 

 

aMeans and S.E.M. for n = 3 

* p < 0.05; ** p < 0.001 
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Table 3.5. Isotopomer distribution of GSH in RBCs incubated with [13C1,2,3,4] α-

ketoglutarate, alanine, and glucose. 

 Percent Mass isotopomer distribution (GSH)a 

Time (h) Monoisotopic M+1 M+2 M+3 M+4 

0 85.6±2.5 11.4±2.9 1.47±0.86* 1.59±0.81 0 

6 86.6±1.1 7.99±0.19* 1.67±0.45* 0.33±0.33 3.42±0.33** 

12 80.9±0.8 8.08±0.60 2.11±0.34* 0.80±0.42 8.09±0.15** 

21.25 78.4±0.9* 7.96±0.67 1.03±0.52* 1.38±0.18* 11.3±1.2* 

Expected distribution due 

to natural abundance 
82.93 10.90 5.43 0.62 0.10 

 

aMeans and S.E.M. for n = 3 

* p < 0.05; ** p < 0.001 
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3.5 Discussion 

Human erythrocytes require a continual supply of glutamate to support glutathione 

synthesis, but are unable to transport this amino acid across their cell membrane (Sass, 

1968; Winter & Christensen, 1964; D. J. Young et al., 1987). Although glutamine 

aminohydrolase is often cited as the main contributor to intracellular glutamate levels 

(Ellory et al., 1983; Griffith, 1981; Niihara et al., 1997), rates of glutathione biosynthesis 

are considerably higher than the maximum capacity of GA to produce glutamate. Even 

by conservative estimates (Griffith, 1981), demand from glutathione biosynthesis is 

nearly 8 times higher than the rates of GA-derived glutamate production observed in this 

study (Figure 3.6). The discrepancy between glutamate demand and GA’s biosynthetic 

capacity argues that GA is a minor contributor to the glutamate pool.  

In contrast to our GA findings, we found that up to 89% of the intracellular glutamate 

pool of intact cells can be attributed to alanine aminotransferase. ALT activity observed 

in this study exceeded GA activity by 30 fold and was considerably greater than demand 

from glutathione synthesis. As expected, ALT-derived glutamate is ultimately 

incorporated into glutathione. These findings clearly demonstrate that ALT can be a 

major contributor to steady-state glutamate levels of intact RBCs and argue that in vivo 

glutamate synthesis is predominantly attributable to ALT. 

The biological significance of the high aspartate aminotransferase activity we 

observed in this study is unclear. Although RBC membranes are essentially 

impermeable to aspartate (Fincham et al., 1987; Maede et al., 1983), the intracellular 
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machinery for converting aspartate to glutamate is nearly 13 times more efficient than 

ALT. Since mature erythrocytes lack the enzymes required for oxaloacetate synthesis, 

the presence of AST cannot be attributed to aspartate biosynthesis. One possible 

explanation for the presence of AST is that the enzyme is a developmental holdover 

from reticulocytes, which synthesize oxaloacetate as a part of the tricarboxylic acid 

cycle (Gasko & Danon, 1972).  
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Figure 3.6. Three pathways for de novo glutamate synthesis in RBCs. Rates (µM h-1) 

indicate NMR, MS and literature values for transport kinetics, alanine 

aminotransferase, aspartate aminotransferase, glutamine aminohydrolase, and 

glutathione biosynthesis. Abbreviations: Pyr, pyruvate; αKG, α-ketoglutarate; Oaa, 

oxaloacetate; amino acids are represented by their three letter codes. *Data from the 

current study; †data from (Griffith, 1981); ‡data from (Niihara et al., 1997); §data from 

(Fincham et al., 1987; Maede et al., 1983). Because of rapid kinetics of the 

aminotransferase reactions, alanine and α-ketoglutarate transport rates were 

assumed to be equivalent to the overall rates at which intact cells consumed these 

compounds. 
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In summary, we evaluated three possible pathways for glutamate production in 

RBCs using 1H-13C NMR and MS metabolomics techniques. Of these pathways, only 

ALT provides a plausible mechanism for supporting glutathione synthesis in intact cells. 

Given that human RBCs are readily permeable to cysteine and glycine (Harvey & Clive 

Ellory, 1989), and that all of the glutathione biosynthetic steps are well characterized 

(Majerus et al., 1971; Minnich et al., 1971), the ALT mechanism presented here 

provides a simple explanation for the sole unresolved step in glutathione biosynthesis.  
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Chapter 4 

Targeted metabolite screening in AFEX-treated corn stover hydrolysates 
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 4.1 Background 

Conversion of lignocellulosic biomass to fuels has become a major goal for many 

scientists and nations. Currently, a large effort is underway to push the limits of ethanol 

production from Saccharomyces cerevisiae as well as to engineer ethanologenic 

Escherichia coli. I have collaborated with scientists at the Great Lakes Bioenergy 

Research Center (GLBRC) to provide metabolite data relevant to the development of 

these organisms. 

To keep these studies in the context of real world biofuel production, engineered 

microbes are grown in ammonia fiber expansion pretreated corn stover hydrolysates 

(AFEXCSH) (Teymouri, Laureano-Pérez, Alizadeh, & Dale, 2004). Ammonia fiber 

explosion (AFEX) pretreatment is one of several processes that makes lignocellulosic 

material more susceptible to enzymatic hydrolysis; corn stover is residual leaves and 

stalks of corn (Zea mays) that remain in the field after harvest. Corn stover was treated 

by AFEX and then mixed with commercial mixtures of cellulase and hemicellulase 

enzymes. This final mixture, which contains glucose, xylose and other metabolites 

liberated from plant cells, is used as a growth media.  

In this chapter I will present: 

1) A general workflow for preparation, data collection and analysis of AFEXCSH 

samples.  

2) An evaluation of automated shimming. One of the most important parameters for 

ensuring high quality NMR data is shimming. Automating this process has been 
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available for many years, and is especially useful within the metabolomics community. 

However, the performance of automated shimming for high-throughput metabolomics 

has not been reported in the literature. All data collected for AFEXCSH spent media 

samples was performed using automated shimming and we evaluated the performance 

using common metrics. 

3) Data from two collaborations with GLBRC scientists. 

4.2 Protocol for AFEXCSH sample preparation and data collection 

Materials and reagents 

Syringe filters (0.45 micron) were from Nalgene. Sodium azide (NaN3, microbial 

growth inhibitor) was from Sigma-Aldrich. The following reagents were from Cambridge 

Isotope Laboratories:  deuterated water (D2O) and 2,2-dimethyl-2-silapentane-5-

sulfonate (DSS, chemical shift reference standard). A micro pH combination electrode 

(part number: Z113441) from Sigma-Aldrich was used for titrating samples. 

 

Sample collection and preparation 

Samples were collected from continuous growth fermenters using AFEXCSH as the 

growth medium. At designated time points, 1 ml of sample was collected from the 

fermenter and centrifuged to clear S. cerevisiae or E. coli from the AFEXCSH spent 

media. Then the sample was filtered using a 0.45 micron syringe filter. Filtering served 

to remove large particles and residual microbial cells. Samples were frozen at -20 °C 

until further processing. 
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The samples were thawed, briefly vortexed, centrifuged at 12,000 RPM for 5 min 

and prepared for NMR as follows: 560 µl of AFEXCSH sample, 100 µl of D2O containing 

6.6 mM 2,2-dimethyl-2-silapentane-5-sulfonate(DSS) and 3.3 mM NaN3 (H2O:D2O = 

85%:15%). The resulting solution was titrated with concentrated HCl or NaOH as 

needed to achieve a glass electrode pH reading of 7.40 ± 0.05. If samples were not 

immediately used for data collection, they were frozen at -20 °C until data collection. For 

each sample, 550 µl was pipetted into a Bruker SampleJet 5 mm NMR tube and placed 

in a 96-tube rack. Occasionally samples formed precipitates, in those instances the 

sample was centrifuged at 12,000 RPM for 5 min prior to loading into an NMR tube. 

 

NMR data collection, processing and analysis  

NMR data were collected at the National Magnetic Resonance Facility at Madison on 

a Bruker Avance III spectrometer operating at 600 MHz for 1H and equipped with a 

triple-resonance (1H, 13C, 15N, 2H lock) 5 mm cryogenic probe and SampleJet. The 

probe was tuned and matched for the first sample. Samples were maintained at 298 K. 

For each sample, data were collected as 1D 1H (with water suppression) and 2D 1H-13C 

HSQC spectra. The T1 inversion recovery experiment was used to determine an optimal 

interscan delay time for 1D 1H experiments. All preset experimental parameters are 

listed in Table 4.1. 
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Table 4.1. Table of recommended experimental parameters used for data collection. 

 Bruker pulse sequence 

 1D 1H 2D 1H-13C HSQC 

Parameter zgpr hsqcetgpsisp2.2 

Spectral width (ppm) 10.5 10.5 (1H), 70 (13C) 

Number of scans 32 4 

Steady-state scans 0† 16 

Number of data points 25,250 2524 

Number of increments not applicable 368 

Interscan delay (s) 25 1.75 

Presaturation power (W) 2.9 × 10-6 not applicable 

Data collection time (min) 15 49 

†We originally chose to set this value to 8 scans. However with such a long interscan 

delay time (25 s), there is no reason to perform steady-state scans. By removing 

steady-state scans, we decreased data collection time by 3.3 minutes. The data 

presented below used the original value of 8 scans. 
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The entire data collection process was automated using a Python script written in-

house by Dr. Larry Clos (NMRFAM staff scientist). Briefly, the script performed the 

following tasks prior to acquiring data: 1) sample switching, 2) sample temperature 

equilibration, 3) sample locking to D2O, 4) automated 3D shimming using TopShim, 5) 

automatic calibration of the 90° pulsewidth and the transmitter offset frequency for 1H, 6) 

automatic adjustment of receiver gain.  

Data from 1D 1H experiments were processed as follows using TopSpin 3.1: 1) 

phase-corrected, 2) zero-filled to 65,536 points, 3) application of squared cosine window 

function and 4) automatic baseline correction. Data from 2D 1H-13C were processed as 

follows with nmrPipe (Delaglio et al., 1995): 1) phase-corrected 2) a squared cosine 

window function was applied in both dimensions, 3) zero-filled to 4096 and 512 points in 

the 1H and 13C dimensions, respectively, 4) the 13C dimension was shifted 27.5 ppm to 

the right by applying a circular shift. Initially 2D data were not processed using TopSpin 

because we were unaware of a function that could perform the circular shift, however 

we recently discovered the existence of a TopSpin AU program called ‘2df1shift’, which 

performs a circular shift. 2D data are also correctly referenced in TopSpin using the 

macro ‘Xnucref’ written by Dr. Larry Clos. 

Metabolites were identified using the Madison Metabolomics Consortium Database 

(MMCD) (Cui et al., 2008); assignments were verified by overlaying NMR spectra of 

standards from the BioMagResBank (BMRB) (Markley et al., 2007); All data were 

analyzed using rNMR (I. A. Lewis et al., 2009). For metabolites quantified by 1D 1H, 
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peak volumes were calibrated to DSS. For metabolites quantified by 2D 1H-13C HSQC, 

peak intensities were calibrated to standards of known concentration from metabolite 

mixtures prepared at 3 different concentrations (Table 4.2). The standard mixtures were 

prepared in H2O:D2O (85%:15%) containing 1 mM DSS and 0.5 mM NaN3. Each 

mixture was titrated to a glass electrode pH reading of 7.40 ± 0.05. The contents and 

high concentration value for each metabolite was chosen to reflect estimations from a 

pilot study. Concentrations measured in the NMR tube for each AFEXCSH sample were 

multiplied by 0.85-1 to account for dilution after addition of D2O. I recommend repeated 

measures of the standard mixtures at regular intervals (i.e. every 20 samples) when a 

large number of samples are collected.  
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Table 4.2. Metabolite standard mixtures used for calibration. Each mixture was 

prepared in H2O:D2O (85%:%15) containing 1 mM DSS and 0.5 mM NaN3. Each 

mixture was titrated to a glass electrode pH reading of 7.40 ± 0.05.  

Metabolite High mix (mM) Mid mix (mM) Low mix (mM) 
Acetamide 21.08 10.54 4.22 
Acetate 31.03 15.51 6.21 
Alanine 3.29 1.64 0.66 
Arabinose 49.99 25.00 10.00 
Arginine 2.06 1.03 0.41 
Asparagine 2.05 1.03 0.41 
Aspartate 1.94 0.97 0.39 
Betaine 8.30 4.15 1.66 
Carnitine 2.00 1.00 0.40 
Cellobiose 2.02 1.01 0.40 
Choline 2.18 1.09 0.44 
Citrate 2.40 1.20 0.48 
Fructose 12.35 6.18 2.47 
Galactose 5.21 2.61 1.04 
Glucose 200.60 100.30 40.12 
Glutamate 2.01 1.01 0.40 
Glutamine 2.07 1.04 0.41 
Glycine 2.38 1.19 0.48 
Isocitrate 2.48 1.24 0.50 
Isoleucine 2.01 1.01 0.40 
Lactate 20.93 10.46 4.19 
Leucine 2.18 1.09 0.44 
Lysine 2.13 1.07 0.43 
Malate 2.38 1.19 0.48 
Mannose 5.02 2.51 1.00 
Methionine 1.94 0.97 0.39 
Phenylalanine 2.11 1.05 0.42 
Proline 1.95 0.98 0.39 
Serine 2.24 1.12 0.45 
Succinate 10.55 5.28 2.11 
Threonine 2.10 1.05 0.42 
Valine 2.27 1.14 0.45 
Xylose 199.90 99.95 39.98 
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4.3 Evaluation of automated shimming for AFEXCSH spent media samples 

When a sample is inserted into an NMR spectrometer, inhomogeneities develop 

between the local magnetic field of the sample and the static field produced by the 

spectrometer. Perturbations arise from different sources such as solvent, tube quality, 

sample composition or ionic strength. These inhomogeneities lead to broad, low signal-

to-noise peaks that compromise resolution and metabolite detection.  

Shimming, in the modern day sense, is the process of correcting these 

inhomogeneities by altering the electric current flowing through specialized sets of coils 

that lay in the vicinity of the sample. Altering the current in turn affects the induction of 

the local magnetic field. The various coils are manipulated in an iterative fashion until 

the local magnetic field matches that of the field generated by the spectrometer. 

Although tedious, an experienced NMR spectroscopist should be able to shim a sample 

for metabolomics within 5 minutes. However, manual shimming presents a bottleneck 

for high-throughput data collection, because the spectroscopist must rest eventually. 

Automated shimming is routinely used for collecting metabolomics data (Beckonert 

et al., 2007; Gronwald et al., 2008; Ward Jane et al., 2010; Mercier, Lewis, Chang, 

Baker, & Wishart, 2011; Verwaest et al., 2011). However, the performance of automated 

shimming for high-throughput metabolomics has not been reported.  

For this study I utilized automated shimming and evaluated its performance toward 

data collection for AFEXCSH spent media. The data were collected on a 600 MHz 
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Bruker Avance III spectrometer running TopSpin 3.1 and shimming was conducted 

using TopShim with spectrum optimization (Weiger, Speck, & Fey, 2006).  

A common strategy for shimming is to choose an isolated peak in the spectrum and 

manipulate the shim coils until the chosen peak is symmetric about a Lorentzian shape 

and the non-weighted linewidth (peak width at 50% of maximum intensity) reaches a 

predetermined value.  

2,2-dimethyl-2-silapentane-5-sulfonate(DSS, Fig. 4.2A) is routinely added to 

samples as a chemical shift reference (set to 0 ppm) and internal standard. 

Furthermore, the peak observed from the degenerate trimethyl protons ( DSS(CH3)3 ) is 

isolated from other peaks that arise from common metabolites. Therefore, I chose to 

use DSS for shimming.  

When manually shimming, I try to shim the sample so that the non-weighted 

linewidth for the DSS(CH3)3 (Figure 4.2A) is 1.0 Hz or better. This is accomplished by 

employing what I will refer to as real-time Fourier transform shimming (RTFT shimming). 

This process involves continuously collecting a free induction decay, Fourier 

transformation and observing the resulting 1D 1H spectrum zoomed into DSS(CH3)3. In 

this manner one can manipulate the shim coils while observing a real-time response. A 

linewidth of 1.0 Hz is sufficient to resolve key signals in a targeted assay, and this value 

is also less than most coupling constants, which can be useful when confirming 

metabolite assignments.  
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It is also good practice to use peak symmetry as another criterion for evaluating the 

quality of shimming. If a sample has been shimmed well, then the DSS(CH3)3 is 

symmetric and approximates a Lorentzian shape (Fig 4.2B). Furthermore, peaks due to 

coupling of 29Si and 1H will appear on both sides of the DSS(CH3)3 peak (Fig 4.2B). 

Achieving a high degree of symmetry and Lorentzian shape is important because all 

signals in a sample will show systematic errors if the shimming is bad. This may lead to 

signal overlap, unambiguous assignment and may negatively impact the accuracy of 

quantification.  
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Figure 4.2. A) Structure of DSS. B) DSS-(CH3)3 peak found at 0 ppm. The three 

methyl groups appear as a single peak. The two flanking peaks represent coupling 

between 1H and 29Si (2JH-Si = 3.3 Hz).  
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I evaluated the quality and reproducibility of automated shimming by first comparing 

the linewidth and peak shape of the DSS(CH3)3 signal from 97 spectra. I collected data 

for 82 AFEXCSH spent media samples over two data collection sessions. The three 

standard mixtures were collected in duplicate for the first session and in triplicate during 

the second session resulting in 15 spectra total.  

Using automated shimming I found the average non-weighted linewidth for all 

samples to be 0.846 ± 0.104 Hz (mean ± standard deviation, n = 97). For AFEXCSH 

spent media samples the average was 0.864 ± 0.096 Hz (n = 82). For the standards the 

average was 0.749 ± 0.098 Hz (n = 15). A histogram displaying the range of values 

obtained is shown in Figure 4.3. These values indicate that automated shimming 

performed well and was reproducible for AFEXCSH spent media samples.  

However, linewidth alone is not the only criterion for assessing shim quality. I also 

evaluated the quality of automated shimming by judging the peak symmetry of 

DSS(CH3)3. Table 4.3 describes our grading scheme. Figure 4.4 shows examples of 

grades described in Table 4.3. All spectra were weighted with a squared cosine function 

to remove sinc wiggles. 
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Figure 4.3. Histogram of linewidths obtained from automated shimming. Circles 

overlaid on histogram represent observed values. 
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Table 4.3. Shim grading visual analysis criteria. 

Grade Description Example 

A Peakshape is symmetric with well-resolved 29Si peaks; Completely 

acceptable for data collection. 

Fig. A.3A 

B Slight or noticeable asymmetry; 29Si peaks are evident but less well 

resolved; Acceptable, although provided adequate experimental 

time, fix shim problems and recollect data. 

Fig. A.3B 

C Large asymmetry; One or both 29Si peaks absent; Unacceptable for 

data collection, must fix shim problems and recollect data. 

none 
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Figure 4.4. Examples of grades A and B peak shapes for DSS(CH3)3 in AFEXCSH 

spent media samples. Data are from AFEXCSH spent media samples. Both spectra 

had the same receiver gain and were weighted with a squared cosine function to 

remove sinc wiggles.  
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Based on my grading scheme, 82% of the spectra received an A rating while 18% 

received a B rating. No samples received a C rating! These results provide further 

indication that automated shimming for AFEXCSH spent media samples is of high, 

reproducible quality. 

An important aside to point out is that while I shim using 1D NMR, our assay is 

primarily based 2D NMR. As a result, some of the resolution gained from good 

shimming is lost because of limitations in the amount of data that can be digitally 

recorded during a multidimensional experiment, although that loss of resolution is 

replaced by a gain in peak dispersion by having two dimensions of data. Most 

importantly though, good shimming effectively increases signal-to-noise, even within the 

context of a 2D 1H-13C HSQC experiment, and, therefore, good shimming is rewarded.  

In conclusion I found that automated shimming using TopShim on a Bruker Avance 

III 600 MHz spectrometer yields high quality, reproducible shimming for AFEXCSH 

spent media samples. The quality of shimming was more than adequate for assaying by 

2DFMQ and is very promising for conducting NMR-based metabolomics within the 

framework of 1D NMR.  

4.4 Effect of sample rotation on AFEXCSH samples 

In order to conduct targeted analyses within the framework of 1D NMR, further 

improvements in shimming and even higher reproducibility may be desirable. A well-

established method for improving shimming is to rotate the sample in the bore during 

data collection. By providing this motion to the molecules within the sample, the 
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effective homogeneity of the magnetic field can be improved. However, using this 

method is undesirable for methods such as 2DFMQ due to the use of pulsed field 

gradients in the HSQC pulse sequence. 

One potential drawback of sample rotation is the generation of spinning side bands, 

which arise from poor shimming in the axes perpendicular to the axis of rotation (off-axis 

shims). The spinning sidebands are signals that flank the signal of interest and they 

occur at integer multiples of the sample rotation rate. 

I investigated the effects of sample rotation using one standard mixture (Mid mix 

from Table 4.2) and one AFEXCSH sample. The protocol was modified slightly from that 

listed above in that sample rotation was turned on after the automated shimming 

followed by a second round of automated shimming in which only the axis of rotation 

was shimmed. The second shimming procedure only requires about 30 seconds. 

Sample rotation speeds of 8, 12, 16 and 20 Hz were all capable of improving the 

linewidth of DSS(CH3)3 (Figure 4.5) Sample rotation of the standard mix only improved 

linewidth by 0.180 Hz (at 12 Hz rotation and above), whereas an AFEXCSH sample that 

only achieved a B grade autoshim was reduced by 0.524 Hz (at 16 Hz rotation) and 

reassigned to a grade A shim based on lineshape (Figure 4.6).  
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Figure 4.5. Effect of sample rotation rate on linewidth of DSS(CH3)3. Filled squares 

represent an AFEXCSH sample, and triangles represent a standard mixture (Mid mix, 

Table 4.2). The minimum (instrument limited) sample rotation rate was 7 Hz. 
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Figure 4.6. Lineshape comparison of (A) a standard mixture (Mid mix, Table 4.2) and 

(B) an AFEXCSH sample during sample rotation. Spinning noticeably improved the 

lineshape of the AFEXCSH sample. 
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From this preliminary investigation it appeared that sample rotation provided only a 

modest improvement in shimming for a standard mixture that already achieved high 

quality shimming. In contrast, sample rotation significantly improved the lineshape of an 

AFEXCSH sample which initially achieved mediocre shimming. Furthermore, no 

spinning sidebands were present, indicating that even in the AFEXCSH sample off-axis 

shims were correctly determined during the first round of automated shimming. 

A more thorough analysis should be conducted on a larger dataset to ensure 

reproducibility, but sample rotation does appear offer an approach to improved 

shimming for ‘troublesome’ samples when conducting 1D 1H NMR assays. 



 106 

4.5 Analysis of AFEXCSH in ethanologenic E. coli fermentations 

 

The following data are adapted from: 

 

Schwalbach M, Keating D, Tremaine M, Marner W, Zhang Y, Bothfeld W, Higbee A, 

Grass J, Cotton C, Reed J, da Costa Sousa L, Jin M, Balan V, Ellinger J, Dale B, Kiley 

P, Landick, R (2012) Complex physiology and compound stress responses during 

fermentation of alkaline-pretreated corn stover hydrolysate by an Escherichia coli 

ethanologen. Applied and Environmental Microbiology 78(9), 3442-3457 

 

My role in the project: I carried out NMR analyses of the concentrations of a set of 

metabolites present in AFEXCSH at the beginning and end of a 124-hour fermentation.  

 

The goal of this study was to characterize how ethanologenic E. coli responds 

metabolically and transcriptionally to concentrated hydrolysates derived from alkali-

pretreated lignocellulose, with ACSH as the test case. The study was conducted using 

an ethanologenic E. coli K-12 strained developed by the GLBRC. The results of one of 

my analyses are presented in Table 4.4.  
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Table A.4. NMR analysis of AFEXCSH at the beginning and end of fermentation. 

Compound 0 hours (mM) 124 hours (mM) 
Glucose  358.2   17.6 
Xylose 198.5 176.4 
Arabinose   33.7   16.4 
Fructose     8.2     0 
Galactose     6.4     5 
Mannose     2.6     0 
Malate     9.3     0 
Acetamide    75.8   70.4 
Acetate    33.3   41.5 
Succinate     0.3   62 
Ethanol   55 273 
Betaine     0.7     0.6 
Choline     0.7     0.7 
Carnitine     0.2     0.1 
Alanine     0.8     1.1 
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In this study, gene expression experiments were conducted using a synthetic 

hydrolysate (SynH) and glucose minimal media for comparison with AFEXCSH. SynH 

was a defined medium that was based on metabolites and micronutrients characterized 

in AFEXCSH.  

My analysis, which was conducted after SynH formulation, showed that several 

metabolites were missing from SynH. By NMR I identified the following metabolites that 

were not characterized by other methods: acetamide, fructose, choline, betaine, 

carnitine and malate. Acetamide was of particular interest due to its high concentration 

and potential implication in osmotic stress. Malate and fructose may also be of interest 

because they were completely consumed by E. coli, which could have implications 

toward understanding inefficient use of other carbon sources, such as xylose, for 

energy. I expect that one of the major contributions of my analysis will be toward 

improved future formulations of SynH. 
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4.6 Analysis of AFEXCSH in S. cerevisiae fermentations 

The following data were generated from a collaboration with Dr. Trey Sato in the 

GLBRC. His group is interested in using comparative multi-omic analyses 

(transcriptomics, metabolomics, etc.) of engineered S. cerevisiae to identify bottlenecks 

in biofuel fermentation. One of the goals of their work was to compare evolved and 

unevolved strains with different abilities to ferment xylose.  

We evaluated four strains of S. cerevisiae: 1) GLBRC2YA was wild-type S. 

cerevisiae engineered with Pichia stipitis XYL1-3; 2) GLBRCY79 and GLBRCY73 were 

substrains evolved from GLBRCY2A on yeast lab media + 2% xylose for 36 

generations; 3) GLBRCY4A was wild-type S. cerevisiae engineered with Clostridium 

phytofermentans XylA, P. stipitis XYL3 and S. cerevisiae TAL1. 

I provided time-course analyses for metabolites present in AFEXCSH spent media 

samples at the beginning and end of 120 hour fermentations (in one data set the 

fermentation lasted 148 hours). All time-course data are presented in Table 4.5 through 

Table 4.8. 
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Table 4.5. Metabolite data for strain GLBRC2YA (wild-type S. cerevisiae engineered 

with Pichia stipitis XYL1, 2 and 3). Data are reported in mM as mean ± SEM (n = 3 

unless otherwise indicated). Timepoints were not exactly the same for all experiments, 

so the average was taken for similar time points, n = 3 unless otherwise indicated. 

GLBRCY2A 
Time(hrs) 

Metabolite 0 12.74 22.19† 24.83‡ 27.22† 47.81 119.72 143.88‡ 
Ace 32.77±0.94 31.16±0.77 28.13±0.53 28.29 27.69±0.51 28.40±0.69 27.31±0.97 29.60 
Ala 0.78±0.01 0.53±0.02 0.27±0.07 0.38 0.34±0.01 0.39±0.03 0.48±0.03 0.51 

Amd 70.35±1.74 70.45±1.50 68.46±2.34 70.39 68.28±0.59 69.46±1.74 71.44±2.63 71.84 
Ara 32.94±0.73 31.80±1.15 30.16±0.07 30.98 29.40±0.96 30.09±1.23 27.88±1.53 29.86 
Bet 0.57±0.00 0.53±0.01 0.51±0.02 0.56 0.51±0.00 0.54±0.01 0.52±0.02 0.57 
Cho 0.61±0.04 0.55±0.00 0.39±0.00 0.44 0.41±0.02 0.44±0.03 0.41±0.03 0.45 
Crn 0.17±0.01 0.17±0.00 0.16±0.00 0.18 0.16±0.00 0.17±0.01 0.16±0.01 0.18 
Eth 0.00±0.00 212.85±7.39 464.26±28.12 520.50 483.53±4.64 466.52±23.90 287.68±52.59 428.23 
For 5.66±0.29 5.70±0.18 4.92±0.23 5.02 5.04±0.09 4.89±0.05 4.37±0.08 4.66 
Fru 5.68±0.07 4.58±0.17 0.00±0.00 0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00 
Gal 5.54±0.14 5.57±0.21 5.18±0.16 5.98 5.24±0.10 5.39±0.21 5.01±0.13 5.30 
Glc 304.61±9.88 181.82±11.13 13.39±0.06 11.14 10.42±0.20 10.39±0.73 8.07±0.26 8.61 
Gly 0.38±0.02 0.31±0.03 0.23±0.05 0.28 0.26±0.01 0.27±0.02 0.29±0.03 0.32 
Lac 10.48±0.31 10.97±0.22 11.69±0.56 12.12 11.50±0.01 11.52±0.31 11.11±0.54 11.43 
Leu 0.43±0.01 0.03±0.03 0.00±0.00 0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00 
Mal 6.44±0.32 6.78±0.23 6.29±0.46 6.34 6.56±0.05 6.29±0.01 6.43±0.03 6.48 
Man 2.07±0.02 1.95±0.12 0.00±0.00 0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00 
Ser 0.56±0.02 0.47±0.03 0.53±0.01 0.48 0.44±0.02 0.47±0.06 0.37±0.03 0.35 
Suc 0.57±0.03 0.72±0.03 0.78±0.04 0.94 0.74±0.01 0.81±0.05 0.76±0.05 0.91 
Val 0.30±0.01 0.08±0.08 0.00±0.00 0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00 
Xyl 198.06±4.82 192.87±6.51 177.79±1.31 187.76 171.12±2.43 163.54±7.08 107.53±4.50 125.00 

†Data was only available in duplicate 

‡Only single dataset available 

Metabolite key code: Ace, acetate; Ala, alanine; Amd, acetamide; Ara, arabinose; Bet, betaine; Cho, 

choline; Crn, carnitine; Eth, ethanol; For, formate; Fru, fructose; Gal, galactose; Glc, glucose; Gly, glycine; 

Lac, lactate; Leu, leucine; Mal, malate; Man, mannose; Ser, serine; Suc, succinate; Val, valine; Xyl, 

xylose. 
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Table 4.6. Metabolite data for strain GLBRCY79 (GLBRCY2A evolved on yeast lab 

media + 2% xylose for 36 generations). Data are reported in mM as mean ± SEM (n = 3 

unless otherwise indicated). Timepoints were not exactly the same for all experiments, 

so the average was taken for similar time points, n = 3 unless otherwise indicated. 

GLBRCY79 
Time(hrs) 

Metabolite 0 12.74 22.19† 24.83‡ 27.22† 47.81 119.72 143.88‡ 
Ace 31.83±0.69 31.33±0.85 30.16±0.01 27.32 28.29±0.01 29.21±1.45 29.38±0.97 27.44 
Ala 0.74±0.01 0.50±0.01 0.35±0.04 0.34 0.31±0.00 0.40±0.03 0.46±0.02 0.45 

Amd 68.33±1.23 69.69±0.99 73.13±0.35 68.05 70.11±1.26 70.38±2.80 72.26±1.89 69.22 
Ara 30.97±0.56 31.39±0.47 30.91±0.57 28.24 28.91±0.81 30.16±0.66 27.96±0.49 27.57 
Bet 0.54±0.01 0.53±0.01 0.54±0.00 0.53 0.51±0.02 0.54±0.00 0.53±0.02 0.53 
Cho 0.60±0.01 0.53±0.01 0.41±0.03 0.45 0.40±0.01 0.41±0.01 0.41±0.01 0.43 
Crn 0.17±0.00 0.17±0.00 0.17±0.00 0.17 0.16±0.00 0.17±0.00 0.17±0.00 0.17 
Eth 0.00±0.00 213.82±10.31 529.13±8.77 513.01 509.98±17.33 471.65±20.74 365.83±39.29 421.92 
For 5.74±0.23 5.82±0.10 5.40±0.03 5.05 4.95±0.14 5.18±0.11 5.06±0.03 4.72 
Fru 5.45±0.10 4.48±0.13 0.00±0.00 0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00 
Gal 5.30±0.09 5.26±0.07 5.77±0.06 5.61 5.44±0.14 5.36±0.05 5.07±0.10 5.05 
Glc 305.77±3.12 183.39±8.72 12.35±0.01 10.96 10.07±0.29 9.87±0.35 8.08±0.45 7.31 
Gly 0.37±0.00 0.31±0.01 0.26±0.01 0.27 0.23±0.01 0.26±0.01 0.28±0.01 0.26 
Lac 10.19±0.22 10.83±0.07 12.31±0.24 11.70 11.67±0.09 11.72±0.58 11.44±0.66 11.27 
Leu 0.42±0.01 0.00±0.00 0.00±0.00 0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00 
Mal 6.18±0.29 6.76±0.22 6.94±0.09 6.36 6.49±0.15 6.73±0.22 6.78±0.20 6.54 
Man 2.15±0.06 1.74±0.00 0.00±0.00 0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00 
Ser 0.60±0.05 0.53±0.07 0.44±0.01 0.34 0.40±0.00 0.45±0.03 0.35±0.03 0.34 
Suc 0.54±0.03 0.71±0.03 0.78±0.04 0.85 0.75±0.04 0.82±0.03 0.78±0.06 0.79 
Val 0.29±0.02 0.05±0.05 0.00±0.00 0.00 0.00±0.00 0.06±0.06 0.00±0.00 0.00 
Xyl 194.20±2.07 190.59±4.55 182.17±3.49 174.34 166.64±4.94 147.93±9.60 92.01±6.86 67.35 

†Data was only available in duplicate 

‡Only single dataset available 
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Table 4.7. Metabolite data for strain GLBRCY73 (also from GLBRCY2A evolved on 

yeast lab media + 2% xylose for 36 generations). Data are reported in mM as mean ± 

SEM (n = 3 unless otherwise indicated). Timepoints were not exactly the same for all 

experiments, so the average was taken for similar time points, n = 3 unless otherwise 

indicated. 

GLBRCY73 
Time(hrs) 

Metabolite 0 12.74 22.19† 24.83‡ 27.22† 47.81 119.72 143.88‡ 

Ace 32.87±0.46 28.86±1.07 29.19±0.71 28.95 27.48±1.67 26.90±0.81 28.21±1.22 27.12 

Ala 0.78±0.02 0.48±0.04 0.31±0.03 0.27 0.19±0.02 0.26±0.04 0.31±0.01 0.36 
Amd 70.28±1.02 65.26±2.55 70.15±1.00 71.75 69.15±1.64 68.00±0.98 71.01±2.17 67.64 
Ara 32.19±0.55 29.51±1.19 30.22±1.23 30.94 28.08±1.09 28.24±0.74 26.32±0.29 28.72 
Bet 0.56±0.01 0.52±0.03 0.54±0.01 0.56 0.51±0.02 0.51±0.01 0.51±0.00 0.53 
Cho 0.61±0.02 0.50±0.03 0.42±0.00 0.43 0.42±0.00 0.36±0.02 0.39±0.02 0.40 
Crn 0.17±0.00 0.16±0.01 0.16±0.01 0.17 0.16±0.00 0.15±0.01 0.16±0.01 0.17 
Eth 0.00±0.00 180.49±12.54 488.12±4.32 539.99 493.08±8.13 477.45±17.96 381.25±65.41 459.09 
For 5.89±0.03 5.28±0.17 5.23±0.10 5.18 4.79±0.07 4.93±0.13 5.00±0.30 5.01 
Fru 5.65±0.09 4.39±0.18 0.00±0.00 0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00 
Gal 5.46±0.07 4.96±0.19 5.46±0.30 5.31 5.15±0.03 5.08±0.07 4.87±0.11 4.67 
Glc 307.05±5.06 188.28±4.85 14.14±0.15 11.28 10.04±0.36 9.41±0.27 7.57±0.21 7.20 
Gly 0.36±0.01 0.29±0.02 0.25±0.04 0.25 0.18±0.03 0.21±0.03 0.23±0.02 0.25 
Lac 10.52±0.11 9.96±0.48 11.66±0.53 12.03 11.34±0.20 11.08±0.01 11.24±0.45 10.77 
Leu 0.41±0.00 0.00±0.00 0.00±0.00 0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00 
Mal 6.59±0.01 6.23±0.22 6.87±0.18 6.43 6.25±0.00 6.47±0.04 6.32±0.01 6.55 
Man 2.11±0.01 1.76±0.06 0.00±0.00 0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00 
Ser 0.55±0.01 0.43±0.03 0.48±0.09 0.39 0.40±0.02 0.38±0.05 0.37±0.03 0.28 
Suc 0.56±0.02 0.71±0.06 0.78±0.01 0.96 0.76±0.02 0.80±0.04 0.76±0.03 0.84 
Val 0.30±0.03 0.05±0.05 0.00±0.00 0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00 
Xyl 195.26±4.58 182.12±6.37 187.17±5.24 176.47 163.13±0.49 143.32±5.15 75.88±5.71 63.65 

†Data was only available in duplicate 

‡Only single dataset available 
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Table 4.8. Metabolite data for strain GLBRCY4A (wild-type S. cerevisiae engineered 

with Clostridium phytofermentans XylA, P. stipitis XYL3 and S. cerevisiae TAL1.). Data 

are reported in mM as mean ± SEM (n = 3 unless otherwise indicated). Timepoints were 

not exactly the same for all experiments, so the average was taken for similar time 

points, n = 3 unless otherwise indicated. 

GLBRCY4A 
Time(hrs) 

Metabolite 0 12.74 22.19† 24.83‡ 27.22† 47.81 119.72 143.88‡ 
Ace 32.81±0.46 31.26±0.55 29.82±0.63 26.49 28.00±0.32 29.59±0.96 32.73±1.33 30.10 
Ala 0.78±0.01 0.56±0.00 0.35±0.09 0.40 0.32±0.10 0.38±0.04 0.48±0.02 0.47 

Amd 70.70±0.98 70.39±0.91 73.37±4.06 66.71 69.89±3.08 71.12±1.44 72.51±2.18 69.65 
Ara 32.92±0.44 31.20±0.90 30.62±1.46 30.50 29.17±1.85 30.02±1.47 29.53±1.40 30.84 
Bet 0.56±0.02 0.55±0.01 0.55±0.03 0.57 0.53±0.01 0.54±0.02 0.54±0.02 0.56 
Cho 0.62±0.02 0.53±0.03 0.42±0.02 0.45 0.39±0.01 0.41±0.02 0.41±0.03 0.48 
Crn 0.18±0.01 0.17±0.01 0.17±0.01 0.17 0.17±0.01 0.17±0.01 0.17±0.01 0.18 
Eth 0.00±0.00 200.67±17.94 526.72±35.85 500.09 495.76±21.92 473.33±19.87 311.43±46.79 344.25 
For 5.79±0.29 5.86±0.08 5.45±0.09 4.91 4.89±0.34 5.01±0.14 4.47±0.17 4.27 
Fru 5.68±0.06 4.71±0.18 0.00±0.00 0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00 
Gal 5.50±0.14 5.49±0.19 5.46±0.56 5.49 5.44±0.28 5.23±0.23 5.32±0.24 5.36 
Glc 308.68±8.51 195.65±15.97 12.72±0.12 10.92 10.11±0.64 9.96±0.17 8.82±0.28 8.22 
Gly 0.38±0.02 0.34±0.01 0.24±0.02 0.28 0.25±0.02 0.26±0.02 0.27±0.02 0.31 
Lac 10.50±0.17 10.88±0.06 12.15±0.54 11.35 11.49±0.52 11.82±0.18 11.55±0.30 10.85 
Leu 0.45±0.01 0.00±0.00 0.00±0.00 0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00 
Mal 6.39±0.30 6.97±0.18 6.97±0.33 6.63 6.53±0.48 6.48±0.34 6.66±0.33 6.32 
Man 2.07±0.04 2.05±0.07 0.00±0.00 0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00 
Ser 0.62±0.03 0.57±0.03 0.51±0.02 0.35 0.44±0.06 0.42±0.05 0.38±0.04 0.29 
Suc 0.57±0.02 0.73±0.03 0.82±0.03 0.86 0.78±0.02 0.85±0.05 0.81±0.03 0.89 
Val 0.31±0.01 0.06±0.06 0.00±0.00 0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00 
Xyl 199.37±2.71 195.60±2.44 186.82±11.30 185.91 177.15±5.39 173.90±6.08 148.85±9.26 153.88 

†Data was only available in duplicate 

‡Only single dataset available 
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The major goal was to profile carbohydrate usage and ethanol production in 

AFEXCSH. A time-course showing the relationship between carbohydrate consumption, 

ethanol production and cell density is shown in Figure 4.7 from a representative dataset. 

All strains appeared to reach the same cell density at stationary phase. Strain 

GLBRCY73 was the most successful at utilizing xylose.  

Interestingly, ethanol levels peaked at the same time that glucose levels bottomed 

out, however ethanol levels then dropped even though xylose was consumed. Carbon 

from xylose is expected to enter glycolysis via the pentose phosphate pathway, at which 

point the path to ethanol can continue. At this point it is unclear why the ethanol levels 

dropped. It also is unclear how much xylose was actually converted to ethanol. One way 

to determine if xylose is converted to ethanol might be to add 13C labeled xylose to the 

AFEXCSH, or possibly SynH, and measure 13C incorporation into ethanol.  
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Figure 4.7. Carbohydrate consumption, ethanol production and cell density in 

AFEXCSH for GLBRCY2A (A), GLBRCY79 (B), GLBRCY73 (C) and GLBRCY4A (D). 

Symbol key: ○ cell density, ● ethanol, ◻ xylose, ◼ glucose. This data represents one 

experiment of three that were conducted to evaluate these strains of S. cerevisiae. 

Cell density data was provided by Dr. Trey Sato. 
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Chapter 5 

Conclusions and Outlook 
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Throughout the course of my Ph.D. training I have had the opportunity to receive 

world-class NMR training and to apply that knowledge to metabolomics. I have used 

metabolomics techniques to study basic biochemical mechanisms in human 

erythrocytes and to profile metabolites in complex media used for engineering improved 

ethanologenic organisms. Furthermore, I have made a significant contribution toward 

improving the efficiency and reproducibility of sample preparation for metabolite 

samples. 

I think the major role in the future for NMR in metabolomics will be in synergy with 

MS. The current push in high throughput metabolomics is to do more with less. To be 

able to reach the level of science fiction we need the ability to analyze 10-fold as many 

metabolites as currently possible in a single drop of blood or urine in the blink of an eye. 

Sadly, NMR cannot accomplish this. However, based on current database knowledge, 

neither can MS alone solve this problem.  

The future for NMR in metabolomics will be its utility in the identification of novel 

metabolites with which we can continue to populate our databases. This will be in 

conjunction with integrated LC-MS-SPE-NMR systems (SPE, solid phase extraction). In 

this setup, metabolites are partitioned by LC and then directed by mass to SPE 

columns. Collection on the SPE columns will allow metabolites to be concentrated prior 

to NMR analysis. Over the next decade, I expect to see an explosion in the number of 

metabolites populating the various databases. 
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Appendix A 

NMR-based study of extracellular metabolites produced by E. coli K12 under 

butanol stress 

 

The following Appendix presents a short project I conducted at the RIKEN Yokohama 

Institute Plant Science Center during the summer of 2010. I worked in Dr. Jun Kikuchi’s 

Advanced Metabolomics Research Unit. This project was funded by a fellowship jointly 

awarded by the National Science Foundation East Asia and Pacific Summer Institute 

(NSP EAPSI) and the Japan Society for the Promotion of Science. The goal of this 

program is to introduce students to East Asia and Pacific science and engineering in the 

context of a research setting, and to help students initiate scientific relationships that will 

better enable future collaboration with foreign counterparts. 
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A.1 Background 

In the search for sustainable forms of energy, there has been a large increase in 

research to develop microorganisms that can ferment biomass feedstocks into a 

combustible liquid fuel such as butanol. However, these fermentation products are toxic 

at the large concentrations required to meet current energy needs. In order for these 

fuels to be produced at a practical level, solvent-tolerant microorganisms need to be 

developed.  

Microorganisms live in dynamic environments and are constantly adapting in order to 

handle external stress, such as increased external osmolarity or toxic polar solvents. 

The primary response to this external stress in many cases is metabolic in nature. For 

example, in a hyperosmotic environment, cells lose volume and turgor pressure, which 

leads to disruption of cellular activity. Escherichia coli and Saccharomyces cerevisiae 

respond to increased external osmolarity by decreasing overall energy metabolism, 

leading to higher ATP availability for driving ATP-dependent ion pumps. Furthermore, E. 

coli and S. cerevisiae upregulate the production of trehalose and glycerol, respectively 

which function to reestablish osmotic equilibrium and protein-water interactions 

(Hohmann, 2002; Rod, Alam, Cunningham, & Clark, 1988). 

In contrast, less is known about the primary metabolic response to increased toxic 

polar solvents in the external matrix. Polar solvents, such as ethanol or butanol, are 

believed to: a) alter the dielectric properties of the cellular environment, b) disrupt 

hydrogen bonding interactions between water and other macromolecules, and c) 
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weaken hydrophobic interactions between the plasma membrane lipid bilayer (Ingram, 

1990; Liu & Qureshi, 2009). In both E. coli and S. cerevisiae exposure to polar solvents 

results in reduced metabolic activity (Ingram, 1990; Liu & Qureshi, 2009). Prolonged 

exposure to ethanol results in an increase in fatty-acid chain length in E. coli (Dombek & 

Ingram, 1984), presumably to help maintain plasma membrane integrity. Similarly, 

Clostridia acetobutylicum responds to prolonged butanol exposure by modification of the 

cell membrane to include increased fatty acid chain length in the plasma membrane 

(Vollherbst-Schneck, Sands, & Montenecourt, 1984). 

Butanol is a promising next generation biofuel. According to the U.S. Department of 

Energy Alternative Fuels and Advanced Vehicles Data Center, butanol a) has an energy 

density that is much more comparable to gasoline than ethanol, b) can be produced 

from the same biomass feedstocks as ethanol and c) is compatible with current 

automobile design and fuel transportation infrastructure.  The engineering of organisms 

that can produce branched-chain higher chain alcohols is being led by James Liao’s 

group where they have engineered E. coli to produce, amongst other alcohols, butanol 

via exogenous, non-fermentative pathways (Hanai, Atsumi, & Liao, 2007; Atsumi, 

Hanai, & Liao, 2008); Shen & Liao, 2008). 

A recent study investigated changes in intracellular metabolites in E. coli during 

butanol stress. (Rutherford et al., 2010). In general, amino acids were less abundant. 

Spermidine and agmatine were also noted to decrease under butanol stress. 
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The experimental goal of the current study was to gain an understanding of the 

changes in the external metabolite profile of E. coli under butanol stress. While most 

metabolomics studies focus on changes in intracellular metabolites, I think that we can 

gain valuable information by studying the exometabolome. Furthermore, I also had the 

goal of learning an in vivo NMR technique developed in Dr. Kikuchi’s Advanced 

Metabolomics Research Unit. Finally, I had the goal of experiencing Japanese culture 

and language while at the same time establishing international relationships with 

Japanese scientists. 

A.2 Materials and Methods 

13C D-glucose (U-13C6, 99%) was from Cambridge Isotope laboratories; 13C/15N and 

unlabeled Algal Amino Acid mixture Chlorella Industry Co.; 13C D-xylose (U-13C5, 99%) 

was from Omicron Biochemicals, Inc.; Silantes E. coli OD2 liquid media (13C/15N labeled 

and unlabeled) was from Silantes GmbH. 

 

Measurement of growth kinetics 

Growth kinetics for E. coli K12 were evaluated to determine the effect of butanol 

treatment on doubling rate. Preculture cells were selected by isolating a single colony 

from an LB agar plate and were grown to saturation in LB liquid media in a 37°C 

incubator with agitation. Growth analysis was conducted on cells grown in duplicate 

using Silantes OD2 (unlabeled) media supplemented with natural abundance carbon 

glucose or xylose (0.5% w/v) and non-13C algal amino acid mixture. The media used for 
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growth kinetics did not contain potassium phosphate buffered D2O (see in vivo 1D and 

2D NMR measurements) Cells were treated with 0%, 0.5%, 1% and 2% butanol (v/v).. 

Samples for growth kinetics analysis were inoculated from the preculture to an OD600 of 

0.05, and readings were acquired every 45 min using a benchtop spectrophotometer. 

The unit growth rate was determined by regressing the linear range of data during 

exponential growth phase for time versus ln OD600. The doubling time was calculated 

as: 

 

where k is the slope determined from regressing time versus ln OD600. The final results 

are expressed as percent of inhibition relative to the 0% butanol treatment.  

 

in vivo 1D and 2D NMR Measurements 

All NMR measurements were recorded on a Bruker DRX-500 spectrometer 

operating at 500.13 MHz 1H frequency with the temperature of the NMR samples 

maintained at 310 K. To minimize variance that could arise from different methods of 

tube production, samples were collected in tubes manufactured from a single source. All 

samples were collected in 5 mm NMR tubes manufactured by New Era Enterprises, Inc. 

(NE-UL5). Samples for in vivo NMR measurements were grown in Silantes OD2 

(13C/15N labeled) media, supplemented with 0.5% 13C D-glucose or 0.5% 13C D-xylose 

and 0.5% 13C algal amino acid mixture. Each sample also contained 10% D2O to 

maintain the lock signal, 1 mM 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) as an 
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internal chemical shift reference and 100 mM potassium phosphate buffer prepared to 

pH 7.400. 

For in vivo NMR, 1D and 2D data were collected by interleaving respective 

experiments for 10 hours. Each 1D experiment lasted approximately 6 min, and each 

2D experiment lasted approximately 24 min. One-dimensional spectra were collected 

with a total of 1500 complex points, 256 scans, 1.2-s recycle delay, water signals were 

suppressed using a Watergate pulse sequence and a 13C GARP broadband decoupled 

proton acquisition to reduce spectral complexity by removal of carbon satellites. Two-

dimensional HSQC experiments were collected with a total of 32 complex f1 (13C) and 

1024 complex f2 (1H) points, with 8 scans per f1 increment and a 13C GARP decoupling 

scheme according the method of Kikuchi and Hirayama (Hirayama & Kikuchi, 2007). 

Samples were collected in triplicate. 

 

NMR data processing and analysis 

All spectra were processed using custom NMRPipe (Delaglio et al., 1995) 

processing scripts. Spectra for 1D proton NMR were zero-filled to 2048 points and 

Fourier transformed with a squared cosine window function, phase correction and 

automatic baseline correction. Spectra for 2D HSQC NMR were zero-filled to 1024 

points in both the f2 and f1 dimensions. After zero-filling the spectra were Fourier 

transformed with 10 Hz (f2) and 15 Hz (f1) line broadening, phase correction and 



 124 

automatic baseline correction. The solvent line was removed during processing for 2D 

spectra. 

Data analysis and statistics were performed using R (http://www.r-project.org) and 

the rNMR software package (I. A. Lewis et al., 2009). Metabolites were identified using 

the Platform for RIKEN Metabolomics (PRIMe) (Akiyama et al., 2008) or the Madison 

Metabolomics Consortium Database (MMCD) (Cui et al., 2008); assignments were 

verified by overlaying NMR spectra of standards from the BioMagResBank (BMRB) 

(Markley et al., 2007). Due to the narrow spectral window in f2 for HSQC data, 

standards were often re-referenced by adding 40 ppm to the assigned f2 value. 

A.3 Growth analysis 

Previous studies investigating the adaptation to butanol stress in E. coli were 

conducted in minimal and rich media (Knoshaug & Zhang, 2009). These studies have 

established that E. coli can grow in 1% butanol, however the rate of growth was 

significantly perturbed. Furthermore, other studies have shown that cells display a 

different metabolic profile (Rutherford et al., 2010). The media used in the current study 

(Silantes OD2) is a rich medium. I found that media supplemented with glucose and 

treated with 1% butanol, the doubling rate was inhibited 40% relative to that of the 

untreated glucose control (Table A.1), which is in agreement with previously published 

data for cells grown in YPD, a rich medium (Knoshaug & Zhang, 2009). However, I 

discovered that at the 1% level E. coli did not grow in 5 mm NMR tubes. Therefore my 

NMR experiments were conducted at the 0.5% butanol level.  
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Previous studies indicate that glycolysis is perturbed by the presence of butanol 

(Gonzalez et al., 2003; Brynildsen & Liao, 2009; Rutherford et al., 2010), therefore I 

chose to examine the effects of growth when E. coli were supplemented with xylose, 

which is metabolized through the pentose phosphate pathway. Growth curves for E. coli 

K12 grown in 0.5% glucose or 0.5% xylose supplemented Silantes OD2 (unlabeled) 

displayed a slight pertubration in the growth profile when cultures were treated with 

0.5% butanol (Figure A.1). Interestingly, while all cultures reached stationary phase 

within 6 hours, E. coli K12 grown in glucose supplemented media and treated with 0.5% 

butanol reached stationary at a lower optical density than other conditions. I did not 

collect data for E. coli grown in xylose supplemented media and treated with 1% BuOH 

because I found that cells would not grow at 1% BuOH in NMR determines, regardless 

of carbon source. 

Growth kinetics analysis for E. coli grown in Silantes OD2 (unlabeled) and 

supplemented with glucose or xylose show a relative rate of inhibition of 21% and 24%, 

respectively, when treated with 0.5% butanol (Table A.1). Although cells grown in xylose 

supplemented media showed an inhibition of 6% relative to glucose supplemented 

media, it was determined that this difference was not of practical significance.  
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Table A.1. Data shown is the inhibition of doubling time relative to untreated (0% 

butanol), Silantes OD2 (unlabeled) supplemented with glucose or xylose. The value in 

parantheses for the xylose supplement indicates inhibition relative to untreated glucose. 

Data shown is represented as the average value obtained from duplicates. 

 Percent butanol 

Supplement 0% 0.5% 1% 2% 

0.5% Glucose 0 .213 .396 n.g. 

0.5% Xylose 0 (.06) .189 (.237) n.d. n.g. 

n.d. = not determined; n.g. = no growth was observed. 
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Figure A.1. Growth curves for E. coli K12 grown in Silantes OD2 (unlabeled) 

supplemented with (A) 0.5% glucose and (B) 0.5% xylose. Control samples (0% 

butanol) are represented as filled diamonds with solid line and treated samples (0.5% 

butanol) are represented as open squares with dashed line. Values reported are the 

average of duplicates and error bars represent the range. 
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In summary, I noted no significant difference in the growth profiles as a function of 

carbon source. One limitation we noted at the end of the project was that these cultures 

were grown aerobically with shaking. Whereas the NMR experiments discussed below 

were conducted under anaerobic conditions without shaking. Therefore, I could not 

provide a direct comparison of these growth results with the in vivo NMR experiments. 

A.4 Analysis of real-time NMR experiments  

Previous research showed that E. coli display different profiles of intracellular 

metabolites when exposed to butanol (Rutherford et al., 2010). I hypothesized that E. 

coli would display different extracellular metabolite profiles when provided with different 

carbon sources, while under butanol stress. To assess time-dependent differences I 

used in vivo NMR techniques, which would allow me to monitor the consumption and 

production of extracellular metabolites in real-time.  

I observed and monitored, in real-time, 17 extracellular metabolites (Figure A.2-5). 

The following metabolites did not have a significant correlation with respect to time: 

alanine, arginine, glutamate, glycine, isoleucine, leucine, lysine, valine.  

As expected, glucose and xylose were consumed throughout the time-course. 

Xylose was consumed at a slower rate than glucose. Furthermore, when cultures were 

treated with 0.5% BuOH, the relative rate of carbohydrate consumption appeared to be 

slower (Figure A.3). Interestingly, the only amino acid we observed to be consumed was 

aspartate, which appeared to be slightly inhibited by the 0.5% BuOH treatment. 

Aspartate consumption was inhibited the most when cultures were supplemented with 
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xylose and 0.5% BuOH treatment (Figure A.2). The actual rate at which aspartate was 

consumed qualitatively appeared the same; however, different cultures may have 

experienced different amounts of time in the lag phase. Other observable amino acids 

did not change significantly. 

Not surprisingly, I observed large accumulation of acetate, ethanol, formate, lactate 

and succinate, all products of anaerobic metabolism. Acetate and lactate appeared 

more quickly when glucose was supplied as the carbon source. Hardly any lactate was 

produced in 0.5% BuOH treated cultures supplemented with xylose. Since these 

metabolites are derived mostly from pyruvate, this finding was unsurprising since we 

can expect higher production of pyruvate in the glucose-supplemented samples versus 

the xylose-supplemented samples. Lower production of these acids under butanol 

stress in also unsurprising considering that glycolysis is negatively perturbed. Finally, 

the production of ethanol is also directly tied to pyruvate, and therefore it is reasonable 

that we observed a greater rate of production in glucose-supplemented samples. 

Formate and succinate appeared at relatively similar rates regardless of carbon 

source; however, from scanning the EcoCyc database it is apparent that their 

metabolism is complicated by multiple routes of synthesis (Karp et al., 2002). 
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Figure A.2. Time-course profiles for extracellular metabolites observed in NMR tubes 

of cultures grown in glucose or xylose supplemented media, treated with 0% or 0.5% 

butanol. Data were normalized to the first time-point where a signal was available. 
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Figure A.3. Time-course profiles for extracellular metabolites observed in NMR tubes 

of cultures grown in glucose or xylose supplemented media, treated with 0% or 0.5% 

butanol. Data were normalized to the first time-point where a signal was available. 

†Glucose was only measured in glucose supplemented samples, likewise for Xylose. 



 132 

 

 

Figure A.4. Time-course profiles for extracellular metabolites observed in NMR tubes 

of cultures grown in glucose or xylose supplemented media, treated with 0% or 0.5% 

butanol. Data were normalized to the first time-point where a signal was available. 
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Figure A.5. Time-course profiles for extracellular metabolites observed in NMR tubes 

of cultures grown in glucose or xylose supplemented media, treated with 0% or 0.5% 

butanol. Data were normalized to the first time-point where a signal was available. 
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One of the limitations of this study was that I could not compare relative levels of 

metabolites between samples. Although I added DSS, which can serve as an internal 

standard, its signal was not evident in the HSQC spectra. Another limitation was that 

several replicates failed to grow after inoculating the NMR tube with E. coli. Also in one 

case the supplements added to the media were not 13C-enriched supplements. 

Therefore, the data could be strengthened by repeating with a higher concentration of 

DSS and by ensuring that all replicates work. 

One insight gained from this study is that ethanol is a byproduct of the metabolic 

response to butanol stress. This presents a problem for E. coli engineered for butanol 

production. First, any ethanol produced takes away carbon that should go to butanol 

production. Second, the ethanol is yet another stress with which the organism will have 

to contend. An interesting follow-up study might be to understand why aspartate was the 

only amino acid consumed to a significant degree. 

A.5 Reflections on my experience abroad 

The opportunity to conduct this research was funded through a fellowship awarded 

jointly by the NSF EAPSI and JSPS. The main objectives of the program are 1) to 

introduce students to East Asia and Pacific science and engineering in the context of a 

research setting 2) to help students initiate scientific relationships that will better enable 

future collaboration with foreign counterparts, 3) to receive an orientation on Japanese 

culture and research systems and to pursue research under the guidance of host 

researchers at Japanese universities. 
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The nearly 3 months spent in Japan was my first significant experience abroad. This 

opportunity gave me valuable experience and taught me how to set aside pre-conceived 

notions about another culture, notions that often arise from Hollywood. For example, we 

often think of the Japanese as a culture addicted to work. Certainly, from my experience 

I still believe that Japan is a culture of hard work ethic. However I could not have 

prepared myself for how relaxed the atmosphere became after work hours. The 

Japanese truly know how to enjoy a nice weekend in the summer. I found that nearly 

every weekend my newfound friends were eager to attend a baseball game or fireworks 

display. And more importantly, I discovered that the Japanese love a nice cold beer! 

Another pre-conceived notion that I had prior to spending time in Japan pertains to 

diet. It is no secret that the average Japanese citizen is slimmer than their American 

counterparts. For some reason, I had assumed this was because the Japanese ate less 

food. While I found it to be true that the average size of a meal in Japan was certainly 

smaller than that found in the United States, I equated this with the inability to actually 

eat a lot of food. But I can say unequivocally that the Japanese are completely capable 

of mass food consumption. I was put to shame in an eating contest at least once! 

What I was able to take away from my experience is that the Japanese in general 

make better dietary choices. The first thing I noticed at restaurants or at the lunch 

cafeteria at the RIKEN Yokohama campus is that nobody was drinking beverages laden 

with high-fructose corn syrup. In fact, as I recall the cafeteria did not serve any Coke, 

Pepsi, etc.. Instead, everyone drank tea. Therefore, I started drinking a lot of green tea, 
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a habit I continue even two years later. I also learned about using various types of 

seaweed for cooking. As it turns out, seaweeds are a rich source of nutrients (perhaps 

referring to them as ‘weeds’ is a misnomer). Now, I keep my cupboard stocked with 

various types of seaweed and use them regularly in my cooking. 

Another important experience I had was that of being a foreigner in an ethnically 

homogeneous group. As an American scientist I have routinely worked with international 

scientists, mainly from East Asia. However, I had never stopped think about their 

experience upon arriving in America and starting work in a completely new cultural and 

ethnic setting. It is definitely scary as first; you are surrounded by people who are 

speaking a different language at a million miles per hour. Even with basic skills in a 

foreign language, communication at first is challenging. However, I chose to persevere 

and in the end I gained profound respect for the challenges that many of my current and 

former international coworkers have experienced. 

The main message from my experience in Japan really comes down to learning to 

respect others and their culture while trying to learn something about yourself. I had the 

opportunity to establish scientific collaborations with researchers in Japan, but more 

importantly I made new friends.  

一期一会 
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Appendix B 

Schematics and parts list for the SAMBED 

 

The following appendix contains detailed schematics and a parts list used in the 

contruction of the SAMBED. This work was contributed by Dan Miller, who was the 

engineer that constructed the SAMBED. 
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MILLING CHAMBER: 

 
This is the original schematic drawn by the Physics Department Machine Shop.  The 
inlet and outlet pores to the milling chamber body need to be changed so that both 
accept 10-32 male threaded quick-disconnect couplings.   
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The pancake cylinder can be purchased from McMaster-Carr, part number 1691T12, 
shown below: 
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Milling Chamber Cap: 
 
 

 
 
 
Shown above is the original design that the Physics Department from UW-Madison 
designed on the computer. In order to reduce weight, a large amount of material can be 
milled out of the milling chamber cap.  Also, we can make four grooves at the base of 
the cap, instead of three.  We can also make these grooves slightly deeper, maybe 
1/16” deep.  After shaving off excess metal, it will look something like this: 
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Milling Chamber Body: 
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Shown above is what the Physics Department put together.  The Inlet/ Outlet pores 
should both be the same size (1/8” diameter) and be compatible with the 10-32 quick-
disconnect hose couplings.  The mounting holes in the bottom of the chamber body 
need to be re-aligned so that the quick-disconnect couplings that supply air to the 
pancake cylinder are perfectly aligned with the inlet pore (shown as the smaller of the 
two pores) of the milling chamber body, like we talked about earlier today.  Also, some 
weight can also be saved by shaving off some of the medal, especially in the base of 
the milling chamber body, as well as making four grooves in the base fo the milling 
chamber body and making them deeper, as in the milling chamber cap.  A rough sketch 
of what the reduced weight milling chamber body will look like is shown below: 
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Milling Chamber Body (Continued): 

 
 
Shown below are the fittings that will be threaded into the milling chamber Inlet/ Outlet 
and pancake cylinder.  Also, the sleeve valve, which will be connected to the outlet pore 
prior to the coupling so that I can manually shut off air/ liquid flow leaving the outlet pore 
of the milling chamber body.  The threading is in metric for some reason for that part. 
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Sleeve Valve (shown below): 
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Plunger Valve: 
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In addition to including the o-ring/ gasket for a tight seal, the two channels (1 and 2 
shown in red) need to be the same size to make room for the o-ring.  If we can include 
another o-ring at the base of the plunger, it will ensure that no solvent leaks out while 
the plunger is raised and solvents flow through the two channels.  I’m not sure how long 
the stem of the plunger is, or what threading it has.  It needs to be screwed into the 
pancake cylinder so that it is almost completely flush with the interior of the milling 
chamber body. 
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Milling Chamber Cartridge: 
 
There will be 10 milling chambers per cartridge.  The orientation for one of the milling 
chambers is shown below: 
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In reality, there will be an identical reflection of the above schematic so the two milling 
chambers oppose each other and the entire platform is 10.25” long.  The two squares 
shown left most are air manifolds that are .75” wide and tall.  We will have to mount 
these into the platform, however I am still waiting on the schematics for them.  An 
additional platform will be lowered onto the above platform, to keep the milling 
chambers in place. 
 
Milling Chamber Cartridge (Continued): 
 

 
 
 
 
Shown above is the top plate that is lowered onto the top of the milling chambers.  Like 
the figure on the previous page, this schematic needs to be reflected onto itself to 
represent the full side view of the plate.  We will also have to make holes for a skewer to 
go through both plates in several areas to lock the plates together, with the milling 
chambers sandwiched between them. 
 
Shown on the following pate is a top view of the bottom plate of the milling chamber 
cartridge.  It is kind of hard to see clearly because of the graph paper and the poorly 
scanned image.  I will give you a better copy at another time. 
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The couplings that need to be threaded into the top plate are shown below: 
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Filter Chamber: 
 
Shown left is the filtration chamber body and shown right is the filtration chamber cap.  
The inlet to the filtration chamber body needs to be compatible with a 1/8 NPT thread.  I 
will be threading a 90 degree elbow male connector into the top of the chamber body. 
Into that, an additional quick-disconnect coupling will be threaded, so that it can be 
easily connected to the milling chamber outlet. 
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The threading between the filtration chamber cap and body is up to you.  It needs to be 
air tight though.  I would prefer to have this part done first so that I can test its ability to 
properly filter the solvent sample.  
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MILLING CHAMBER   
  
Beswick Engineering:  
  

Item Number Description 

CKV-13-10M-303-V-X 
SS303 Check Valve with Viton Seals, 1/8" ID Barb Inlet, 10-32 
Ext. Thd. Outlet, Low Back Pressure X-opt. 

QDC-101-E-1810-V 
Quick Disconnect Plug with 1/8" NPT Ext. Th. and Viton Seals, 
SS303 

  
McMaster-Carr Supply:  
  

Item Number Description 

1691T12 
Pancake Composite Tie Rod Air Cylinder; 3/4" Bore, 1/8" to 1" 
Stroke Length 

92196A753 
18-8 Stainless Steel Socket Head Cap Screw 5-40 Thread, 7/8" 
Length, Pack of 50 for $3.45 

5058K221 
Aluminum Single-Barbed Tube Fittings Adapter for 1/8" Tube ID X 
10-32 Unf Male, Silver 

  
Mercer Gasket & Shim:  
  

Item Number Description 

(00000000000)8391 Viton (75D, Brown) O-Ring; 3/8" ID, 1/16" Cross Section 

(0000000000)44965 Viton (75D-) Gasket Soft Ring, 1-1/8" OD x 1" ID x 1/32" Thk  
  
Cate Machine and 
Welding:  
  

Item Number Description 

N/A 
Round Body Milling Chamber Including Single Cap, Body, and 
Plunger; SS303 

  
CIC Ball Company:  
  

Item Number Description 

SS30207500N 3/4" SS 302 Grinding Ball, Grade 1000, Pack of 5 for $37.50 
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FILTRATION 
CHAMBER   
  
Beswick Engineering:  
  

Item Number Description 

QDC-101-I-1810-NS-303-V 
Quick Disconnect Socket with 1/8" NPT Ext. Thd and Viton Seals, 
No Shut-Off Poppet, SS303 

  
McMaster-Carr Supply:  
  

Item Number Description 

48805K18 
Precision Threaded Type 316 SS Pipe Fitting 1/8" Pipe Sz, 90 Deg 
Female X Male Elbow, 5500 PSI 

9263K163 
Metric Viton® Fluoroelastomer O-Ring 2 mm Width, 4 mm ID, 
Pack of 25 for $6.44 

91251A106 
Black-Oxide Alloy Steel Socket Head Cap Screw 4-40 Thread, 1/4" 
Length, Pack of 100 for $9.27 

9317T663 
Corrosion-Resistant 304 SS Wire Cloth Disc 60 X 60 Mesh, 1-1/2" 
Diameter, .0075" Wire Dia, Pack of 25 for $5.37 

  
Mercer Gasket & Shim:  
  

Item Number Description 

(0000000000)44967 
Viton (75D-) Gasket Soft Ring, 2-1/16" OD x 1-1/2" ID x 1/16" 
Thk 

  
Cate Machine and 
Welding:  
  

Item Number Description 

N/A 
Filtration Chamber v3.0 Including Body, Cap, and Ultrafiltration 
Membrane Holder, SS303 Body/ Cap, Delrin Holder 

  
Stemmerich Inc.:  
  

Item Number Description 

N/A 
Duran Tubing; 46 +/- 0.7mm OD x 3.2 +/- 0.3mm Wall x 40 +/- 
0.127mm Length, Ground and Chamfered Edges 
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HOMOGENIZATION 
PLATFORM   
  
Beswick Engineering:  
  

Item Number Description 

MH-1332-303-V 
SS 303 Strait Fitting with Viton Seal, 10-32 Ext. Thd. and 1/8" ID 
Barb  

QDC-101-I-DS-1810-303-V 
Quick Disconnect Socket with 1/8" NPT Ext. Thd and Viton Seals, 
Double Shut-Off, SS303 

QDC-101-I-1810-303-V 
Quick Disconnect Socket with 1/8" NPT Ext. Thd and Viton Seals, 
SS303 

QDC-102-E-1332 
Quick Disconnect Plug with (1/8)” ID Barbed Tube Connection, SS 
303  

  
McMaster-Carr Supply:  
  

Item Number Description 

6541K67 Straight-Jaw Pinch Clamp Pincer 

5058K221 
Aluminum Single-Barbed Tube Fittings Adapter for 1/8" Tube ID X 
10-32 Unf Male, Silver 

3861T81 
Med-Pressure Anodized Alum Thread Pipe Fitting 1/8" Pipe Size, 
Hex Nipple, 31/32" Length 

44705K382 
Low-Pressure Aluminum Threaded Pipe Fitting 1/8" Pipe Size, 
Square Head Plug 

92220A171 
Alloy Steel Low Head Socket Cap Screw 10-32 Thread, 1/4" 
Length, Pack of 25 for $6.88 

91771A122 
18-8 SS Flat Head Phillips Machine Screw 4-40 Thread, 1-3/4" 
Length, Pack of 100 for $10.14 

54105K34 
Double Pinch SS Hose & Tube Clamp 13/64" to 9/32" Clamp 
Diameter Range, Pack of 25 for $8.86 

9334T23 
Antimicrobial Blue Polyethylene Tubing 1/8" ID, 1/4" OD, 1/16" 
Wall, 10 Foot Length for $13.10 

5119K48 
High-Temp Viton® Fluoroelastomer Tubing Soft, 1/8" ID, 3/8" 
OD, 1/8" Wall, Black. 5 Foot Length for $10.17 

53175K82 
Miniature Bolt Hose & Tube Clamp Galvanized Steel, 5/16" to 3/8" 
Clamp Dia Range, Pack of 10 for $9.01 

91251A209 
Black-Oxide Alloy Steel Socket Head Cap Screw 4-40 Thread, 1-
1/8" Length, Pack of 25 for $7.50 
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93615A420 
18-8 Stainless Steel Low Head Sckt Cap Screw 1/4"-20 Thread, 1" 
Length, Pack of 10 for $8.41 

92510A067 
Aluminum Unthreaded Round Spacer 1/4" OD, 13/16" Length, #6 
Screw Size 

91251A546 
Black-Oxide Alloy Steel Socket Head Cap Screw 1/4"-20 Thread, 
1-1/2" Length, Pack of 50 for $7.92 

91251A110 
Black-Oxide Alloy Steel Socket Head Cap Screw 4-40 Thread, 1/2" 
Length, Pack fo 100 for $7.85 

62475K53 
Hand-Operated Miniature Air Control Valve Manual Return, 4-
Way, 10-32 Female Inlet, Toggle 

  
The Manifold Center:  
  

Item Number Description 

D 32-4 
Double Row Manifold (4 Ports), Aluminum with 10-32 UNF Port 
and 1/8 NPT Inlet.  Dimensions: 0.75” x 0.75” 
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FILTRATION 
PLATFORM   
  
Beswick Engineering:  
  

Item Number Description 

QDC-101-E-DS-2PM-V 
Quick Disconnect Panel-Mount Plug with Double Shutt-Off, 10-32 
Int. Thd and Viton Seals, SS303 

  
McMaster-Carr:  
  

Item Number Description 

5058K221 
Aluminum Single-Barbed Tube Fittings Adapter for 1/8" Tube ID X 
10-32 Unf Male, Silver 

5454K67 
Miniature Brass Tube Fitting Swivel Adapter for 1/8" NPT Male to 
1/8" ID Hose, Pack of 5 for $9.62 

44555K149 
Brass Double-Barbed Vacuum Tube Fitting 90 Deg Elbow for 1/4" 
Tube X 1/8" NPTF Male Pipe 

5670K86 
Type 303 SS Multi-Barbed Tube Fitting Adapter for 1/4" Tube ID 
X 1/8" NPT Male Pipe 

50785K113 
Med-Pressure Brass Thrd Pipe Fitting 1/4" Pipe Size, Hex Socket 
Plug, 1/4" Hex 

5085K21 
Nickel-Plated Aluminum Manifold 3 Outlets, 1/4" NPT Inlet X 1/8" 
NPT Outlet 

55425K31 
High-Pressure Clear Tygon PVC Tubing 1/4" ID, 7/16" OD, 3/32" 
Wall Thickness, 5' Length Available 

55485K52 
Long-Flex-Life Clear Tygon PVC Tubing 1/8" ID, 1/4" OD, 1/16" 
Wall Thickness, 2' Length Available 

53175K84 
Miniature Bolt Hose & Tube Clamp Galvanized Steel, 3/8" to 
29/64" Clamp Dia Range, Pack of 10 for &9.59 

93615A420 
18-8 Stainless Steel Low Head Sckt Cap Screw 1/4"-20 Thread, 1" 
Length, Pack of 10 for $8.41 

92196A117 
18-8 Stainless Steel Socket Head Cap Screw 4-40 Thread, 1-1/8" 
Length, Pack of 50 for $3.93 
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93310A106 
Self-Locking Button Head Socket Cap Screw 18-8 Stainless Steel, 
4-40 Thread, 1/4" Length, Pack of 50 for $11.50 

93310A264 
Self-Locking Button Head Socket Cap Screw 18-8 Stainless Steel, 
10-32 Thread, 1/2" Length, Pack of 25 for $8.60 

6718K72 
Stainless Stl Industrial-Shape Hose Coupling Plug, for 1/4" Hose 
ID, 1/4 Coupling Size 

  
Doig Corporation:  
  

Item Number Description 

850-ADN 
Miniature, Non-Relieving Pressure Regulator - 1/8" NPT Port, 0-
100 psig  

446-725-008 0-160 psi gauge, 1/8" NPT Back Mounted 
  
Pneumayne Inc.:  
  

Item Number Description 

C04240X 3-Way, 3-Position Miniature Toggle Valve, Panel Mount 
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SOLVENT RESERVOIR   
  
Beswick Engineering:  
  

Item Number Description 

QDC-101-E-DS-1810-V 
Quick Disconnect Plug with 1/8" NPT Ext. Thd and Viton Seals, 
Double Shut-Off, SS303 

  
McMaster-Carr:  
  

Item Number Description 

55485K52 
Long-Flex-Life Clear Tygon PVC Tubing 1/8" ID, 1/4" OD, 1/16" 
Wall Thickness, 2' Length Available 

5454K67 
Miniature Brass Tube Fitting Swivel Adapter for 1/8" NPT Male to 
1/8" ID Hose, Pack of 5 for $9.62 

5058K221 
Aluminum Single-Barbed Tube Fittings Adapter for 1/8" Tube ID X 
10-32 Unf Male, Silver 

3861T81 
Med-Pressure Anodized Alum Thread Pipe Fitting 1/8" Pipe Size, 
Hex Nipple, 31/32" Length 

44705K382 
Low-Pressure Aluminum Threaded Pipe Fitting 1/8" Pipe Size, 
Square Head Plug 

92220A171 
Alloy Steel Low Head Socket Cap Screw 10-32 Thread, 1/4" 
Length, Pack of 25 for $6.88 

  
Mercer Gasket & Shim:  
  

Item Number Description 

(0000000000)42545 Viton (75D-) Gasket Soft Ring, 1-1/4" OD x 3/4" ID  x 1/16" Thick 
  
Cate Machine and 
Welding:  
  

Item Number Description 

N/A Fabrication of Filtration Chamber v1.0, Pack of 20 for $1,620.00 
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N/A Modification of Filtration Chamber v1.0 into Solvent Reservoir 
  
The Mannifold Center:  
  

Item Number Description 

D 32-4 
Double Row Manifold (4 Ports), Aluminum with 10-32 UNF Port 
and 1/8 NPT Inlet.  Dimensions: 0.75” x 0.75” 
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MISCELLANIOUS 
PARTS   
  
Air Compressor Direct:  
  

Item Number Description 

ACP4406 
All-Power QuietZone® 4.6-Gallon Aluminum Twin Stack Air 
Compressor; Model Number ACP4406  

  
Astro Pneumatic Tool 
Company:  
  

Item Number Description 

N/A 
Astro Pneumatic Model # 4550, Air Oprated Vibrational Paint 
Shaker 
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